Skip to main content
Glama
cbcoutinho

Nextcloud MCP Server

by cbcoutinho
test_config.py12.4 kB
"""Tests for configuration validation.""" import os from unittest.mock import patch import pytest from nextcloud_mcp_server.config import Settings, get_settings class TestQdrantConfigValidation: """Test Qdrant configuration validation.""" def test_mutually_exclusive_url_and_location(self): """Test that setting both QDRANT_URL and QDRANT_LOCATION raises ValueError.""" with pytest.raises( ValueError, match="Cannot set both QDRANT_URL and QDRANT_LOCATION", ): Settings( qdrant_url="http://qdrant:6333", qdrant_location="/app/data/qdrant", ) def test_default_to_memory_mode(self): """Test that :memory: is used when neither URL nor location is set.""" settings = Settings() assert settings.qdrant_location == ":memory:" assert settings.qdrant_url is None def test_network_mode_only(self): """Test network mode with only URL set.""" settings = Settings(qdrant_url="http://qdrant:6333") assert settings.qdrant_url == "http://qdrant:6333" assert settings.qdrant_location is None def test_local_mode_only(self): """Test local mode with only location set.""" settings = Settings(qdrant_location="/app/data/qdrant") assert settings.qdrant_location == "/app/data/qdrant" assert settings.qdrant_url is None def test_in_memory_mode_explicit(self): """Test explicit in-memory mode.""" settings = Settings(qdrant_location=":memory:") assert settings.qdrant_location == ":memory:" assert settings.qdrant_url is None def test_api_key_warning_in_local_mode(self, caplog): """Test that API key in local mode triggers warning.""" import logging caplog.set_level(logging.WARNING, logger="nextcloud_mcp_server.config") Settings( qdrant_location=":memory:", qdrant_api_key="test-api-key", ) assert "API key is only relevant for network mode" in caplog.text def test_api_key_no_warning_in_network_mode(self, caplog): """Test that API key in network mode doesn't trigger warning.""" import logging caplog.set_level(logging.WARNING, logger="nextcloud_mcp_server.config") Settings( qdrant_url="http://qdrant:6333", qdrant_api_key="test-api-key", ) assert "API key is only relevant for network mode" not in caplog.text class TestGetSettings: """Test get_settings() function with environment variables.""" @patch.dict(os.environ, {}, clear=True) def test_get_settings_defaults_to_memory(self): """Test get_settings() defaults to :memory: when no env vars set.""" settings = get_settings() assert settings.qdrant_location == ":memory:" assert settings.qdrant_url is None @patch.dict( os.environ, { "QDRANT_URL": "http://qdrant:6333", "QDRANT_API_KEY": "test-key", }, clear=True, ) def test_get_settings_network_mode(self): """Test get_settings() with network mode env vars.""" settings = get_settings() assert settings.qdrant_url == "http://qdrant:6333" assert settings.qdrant_api_key == "test-key" assert settings.qdrant_location is None @patch.dict( os.environ, {"QDRANT_LOCATION": "/app/data/qdrant"}, clear=True, ) def test_get_settings_persistent_mode(self): """Test get_settings() with persistent local mode env vars.""" settings = get_settings() assert settings.qdrant_location == "/app/data/qdrant" assert settings.qdrant_url is None @patch.dict( os.environ, {"QDRANT_LOCATION": ":memory:"}, clear=True, ) def test_get_settings_explicit_memory(self): """Test get_settings() with explicit :memory: env var.""" settings = get_settings() assert settings.qdrant_location == ":memory:" assert settings.qdrant_url is None @patch.dict( os.environ, { "QDRANT_URL": "http://qdrant:6333", "QDRANT_LOCATION": "/app/data/qdrant", }, clear=True, ) def test_get_settings_mutual_exclusion_error(self): """Test get_settings() raises error when both URL and location set.""" with pytest.raises( ValueError, match="Cannot set both QDRANT_URL and QDRANT_LOCATION", ): get_settings() @patch.dict( os.environ, { "QDRANT_COLLECTION": "test_collection", "VECTOR_SYNC_ENABLED": "true", "VECTOR_SYNC_SCAN_INTERVAL": "600", "VECTOR_SYNC_PROCESSOR_WORKERS": "5", "VECTOR_SYNC_QUEUE_MAX_SIZE": "5000", }, clear=True, ) def test_get_settings_vector_sync_config(self): """Test get_settings() with vector sync configuration.""" settings = get_settings() assert settings.qdrant_collection == "test_collection" assert settings.vector_sync_enabled is True assert settings.vector_sync_scan_interval == 600 assert settings.vector_sync_processor_workers == 5 assert settings.vector_sync_queue_max_size == 5000 class TestChunkConfigValidation: """Test document chunking configuration validation.""" def test_default_chunk_settings(self): """Test default chunk size and overlap values.""" settings = Settings() assert settings.document_chunk_size == 2048 assert settings.document_chunk_overlap == 200 def test_valid_chunk_settings(self): """Test valid chunk size and overlap configuration.""" settings = Settings( document_chunk_size=1024, document_chunk_overlap=100, ) assert settings.document_chunk_size == 1024 assert settings.document_chunk_overlap == 100 def test_overlap_greater_than_or_equal_to_chunk_size_raises_error(self): """Test that overlap >= chunk size raises ValueError.""" with pytest.raises( ValueError, match="DOCUMENT_CHUNK_OVERLAP .* must be less than DOCUMENT_CHUNK_SIZE", ): Settings( document_chunk_size=512, document_chunk_overlap=512, ) def test_overlap_larger_than_chunk_size_raises_error(self): """Test that overlap > chunk size raises ValueError.""" with pytest.raises( ValueError, match="DOCUMENT_CHUNK_OVERLAP .* must be less than DOCUMENT_CHUNK_SIZE", ): Settings( document_chunk_size=256, document_chunk_overlap=300, ) def test_negative_overlap_raises_error(self): """Test that negative overlap raises ValueError.""" with pytest.raises( ValueError, match="DOCUMENT_CHUNK_OVERLAP .* cannot be negative", ): Settings( document_chunk_size=512, document_chunk_overlap=-10, ) def test_small_chunk_size_warning(self, caplog): """Test that chunk size < 512 triggers warning.""" import logging caplog.set_level(logging.WARNING, logger="nextcloud_mcp_server.config") Settings( document_chunk_size=64, document_chunk_overlap=10, ) assert ( "DOCUMENT_CHUNK_SIZE is set to 64 characters, which is quite small" in caplog.text ) assert "Consider using at least 1024 characters" in caplog.text def test_reasonable_chunk_size_no_warning(self, caplog): """Test that chunk size >= 512 doesn't trigger warning.""" import logging caplog.set_level(logging.WARNING, logger="nextcloud_mcp_server.config") Settings( document_chunk_size=1024, document_chunk_overlap=100, ) assert "DOCUMENT_CHUNK_SIZE" not in caplog.text @patch.dict( os.environ, { "DOCUMENT_CHUNK_SIZE": "1024", "DOCUMENT_CHUNK_OVERLAP": "102", }, clear=True, ) def test_get_settings_chunk_config(self): """Test get_settings() with chunk configuration.""" settings = get_settings() assert settings.document_chunk_size == 1024 assert settings.document_chunk_overlap == 102 @patch.dict( os.environ, { "DOCUMENT_CHUNK_SIZE": "256", "DOCUMENT_CHUNK_OVERLAP": "256", }, clear=True, ) def test_get_settings_invalid_chunk_config_raises_error(self): """Test get_settings() raises error for invalid chunk config.""" with pytest.raises( ValueError, match="DOCUMENT_CHUNK_OVERLAP .* must be less than DOCUMENT_CHUNK_SIZE", ): get_settings() class TestEmbeddingModelName: """Test get_embedding_model_name() method.""" def test_openai_takes_priority(self): """Test that OpenAI model is returned when OPENAI_API_KEY is set.""" settings = Settings( openai_api_key="test-key", openai_embedding_model="text-embedding-3-large", ollama_base_url="http://ollama:11434", ollama_embedding_model="nomic-embed-text", ) assert settings.get_embedding_model_name() == "text-embedding-3-large" def test_ollama_used_when_no_openai(self): """Test that Ollama model is returned when no OpenAI configured.""" settings = Settings( ollama_base_url="http://ollama:11434", ollama_embedding_model="all-minilm", ) assert settings.get_embedding_model_name() == "all-minilm" def test_simple_fallback(self): """Test fallback to simple provider when nothing configured.""" settings = Settings() assert settings.get_embedding_model_name() == "simple-384" @patch.dict( os.environ, { "OPENAI_API_KEY": "test-openai-key", "OPENAI_EMBEDDING_MODEL": "openai/text-embedding-3-small", }, clear=True, ) def test_get_settings_openai_model(self): """Test get_settings() loads OpenAI embedding model.""" settings = get_settings() assert settings.openai_api_key == "test-openai-key" assert settings.openai_embedding_model == "openai/text-embedding-3-small" assert settings.get_embedding_model_name() == "openai/text-embedding-3-small" class TestCollectionNameWithProviders: """Test get_collection_name() with different providers.""" def test_collection_name_with_openai(self): """Test collection name uses OpenAI model when configured.""" settings = Settings( openai_api_key="test-key", openai_embedding_model="text-embedding-3-small", otel_service_name="my-deployment", ) assert settings.get_collection_name() == "my-deployment-text-embedding-3-small" def test_collection_name_with_github_models(self): """Test collection name sanitizes GitHub Models prefix.""" settings = Settings( openai_api_key="ghp_test", openai_embedding_model="openai/text-embedding-3-small", otel_service_name="my-deployment", ) # Slashes should be replaced with dashes assert ( settings.get_collection_name() == "my-deployment-openai-text-embedding-3-small" ) def test_collection_name_with_ollama(self): """Test collection name uses Ollama model when no OpenAI.""" settings = Settings( ollama_base_url="http://ollama:11434", ollama_embedding_model="nomic-embed-text", otel_service_name="my-deployment", ) assert settings.get_collection_name() == "my-deployment-nomic-embed-text" def test_collection_name_explicit_override(self): """Test explicit QDRANT_COLLECTION overrides auto-generation.""" settings = Settings( qdrant_collection="custom-collection", openai_api_key="test-key", openai_embedding_model="text-embedding-3-large", ) assert settings.get_collection_name() == "custom-collection"

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/cbcoutinho/nextcloud-mcp-server'

If you have feedback or need assistance with the MCP directory API, please join our Discord server