"""Unit tests for Bedrock provider."""
import json
from unittest.mock import MagicMock
import pytest
from nextcloud_mcp_server.providers.bedrock import BOTO3_AVAILABLE, BedrockProvider
@pytest.fixture
def mock_bedrock_client(mocker):
"""Mock boto3 bedrock-runtime client."""
if not BOTO3_AVAILABLE:
pytest.skip("boto3 not installed")
mock_client = MagicMock()
mocker.patch("boto3.client", return_value=mock_client)
return mock_client
@pytest.mark.unit
async def test_bedrock_embedding_titan(mock_bedrock_client):
"""Test Bedrock embedding with Titan model."""
# Mock response
mock_response = {
"body": MagicMock(
read=MagicMock(
return_value=json.dumps({"embedding": [0.1, 0.2, 0.3]}).encode()
)
)
}
mock_bedrock_client.invoke_model.return_value = mock_response
# Create provider
provider = BedrockProvider(
region_name="us-east-1",
embedding_model="amazon.titan-embed-text-v2:0",
generation_model=None,
)
# Test embedding
embedding = await provider.embed("test text")
assert embedding == [0.1, 0.2, 0.3]
mock_bedrock_client.invoke_model.assert_called_once()
call_args = mock_bedrock_client.invoke_model.call_args
assert call_args.kwargs["modelId"] == "amazon.titan-embed-text-v2:0"
body = json.loads(call_args.kwargs["body"])
assert body == {"inputText": "test text"}
@pytest.mark.unit
async def test_bedrock_embedding_batch(mock_bedrock_client):
"""Test Bedrock batch embedding."""
# Mock response
mock_response = {
"body": MagicMock(
read=MagicMock(
return_value=json.dumps({"embedding": [0.1, 0.2, 0.3]}).encode()
)
)
}
mock_bedrock_client.invoke_model.return_value = mock_response
# Create provider
provider = BedrockProvider(
region_name="us-east-1",
embedding_model="amazon.titan-embed-text-v2:0",
generation_model=None,
)
# Test batch embedding
embeddings = await provider.embed_batch(["text1", "text2"])
assert len(embeddings) == 2
assert embeddings[0] == [0.1, 0.2, 0.3]
assert embeddings[1] == [0.1, 0.2, 0.3]
assert mock_bedrock_client.invoke_model.call_count == 2
@pytest.mark.unit
async def test_bedrock_generation_claude(mock_bedrock_client):
"""Test Bedrock text generation with Claude model."""
# Mock response
mock_response = {
"body": MagicMock(
read=MagicMock(
return_value=json.dumps(
{"content": [{"text": "Generated response"}]}
).encode()
)
)
}
mock_bedrock_client.invoke_model.return_value = mock_response
# Create provider
provider = BedrockProvider(
region_name="us-east-1",
embedding_model=None,
generation_model="anthropic.claude-3-sonnet-20240229-v1:0",
)
# Test generation
text = await provider.generate("test prompt", max_tokens=100)
assert text == "Generated response"
mock_bedrock_client.invoke_model.assert_called_once()
call_args = mock_bedrock_client.invoke_model.call_args
assert call_args.kwargs["modelId"] == "anthropic.claude-3-sonnet-20240229-v1:0"
body = json.loads(call_args.kwargs["body"])
assert body["messages"][0]["content"] == "test prompt"
assert body["max_tokens"] == 100
@pytest.mark.unit
async def test_bedrock_generation_llama(mock_bedrock_client):
"""Test Bedrock text generation with Llama model."""
# Mock response
mock_response = {
"body": MagicMock(
read=MagicMock(
return_value=json.dumps({"generation": "Llama response"}).encode()
)
)
}
mock_bedrock_client.invoke_model.return_value = mock_response
# Create provider
provider = BedrockProvider(
region_name="us-east-1",
embedding_model=None,
generation_model="meta.llama3-8b-instruct-v1:0",
)
# Test generation
text = await provider.generate("test prompt")
assert text == "Llama response"
body = json.loads(mock_bedrock_client.invoke_model.call_args.kwargs["body"])
assert body["prompt"] == "test prompt"
assert "max_gen_len" in body
@pytest.mark.unit
async def test_bedrock_both_capabilities(mock_bedrock_client):
"""Test Bedrock with both embedding and generation models."""
# Mock responses
embed_response = {
"body": MagicMock(
read=MagicMock(return_value=json.dumps({"embedding": [0.1, 0.2]}).encode())
)
}
gen_response = {
"body": MagicMock(
read=MagicMock(
return_value=json.dumps({"content": [{"text": "Response"}]}).encode()
)
)
}
# Mock to return different responses based on modelId
def mock_invoke(modelId, body, **kwargs):
if "embed" in modelId:
return embed_response
else:
return gen_response
mock_bedrock_client.invoke_model.side_effect = mock_invoke
# Create provider with both models
provider = BedrockProvider(
region_name="us-east-1",
embedding_model="amazon.titan-embed-text-v2:0",
generation_model="anthropic.claude-3-sonnet-20240229-v1:0",
)
assert provider.supports_embeddings is True
assert provider.supports_generation is True
# Test both capabilities
embedding = await provider.embed("test")
assert embedding == [0.1, 0.2]
text = await provider.generate("test")
assert text == "Response"
@pytest.mark.unit
async def test_bedrock_no_embeddings():
"""Test Bedrock provider with no embedding model raises error."""
provider = BedrockProvider(
region_name="us-east-1",
embedding_model=None,
generation_model="anthropic.claude-3-sonnet-20240229-v1:0",
)
assert provider.supports_embeddings is False
with pytest.raises(NotImplementedError, match="no embedding_model configured"):
await provider.embed("test")
with pytest.raises(NotImplementedError, match="no embedding_model configured"):
await provider.embed_batch(["test"])
with pytest.raises(NotImplementedError, match="no embedding_model configured"):
provider.get_dimension()
@pytest.mark.unit
async def test_bedrock_no_generation():
"""Test Bedrock provider with no generation model raises error."""
provider = BedrockProvider(
region_name="us-east-1",
embedding_model="amazon.titan-embed-text-v2:0",
generation_model=None,
)
assert provider.supports_generation is False
with pytest.raises(NotImplementedError, match="no generation_model configured"):
await provider.generate("test")
@pytest.mark.unit
async def test_bedrock_dimension_detection(mock_bedrock_client):
"""Test dimension detection for Bedrock embeddings."""
# Mock response with specific dimension
mock_response = {
"body": MagicMock(
read=MagicMock(
return_value=json.dumps(
{"embedding": [0.1] * 1536} # 1536-dim embedding
).encode()
)
)
}
mock_bedrock_client.invoke_model.return_value = mock_response
provider = BedrockProvider(
region_name="us-east-1",
embedding_model="amazon.titan-embed-text-v2:0",
)
# Dimension not detected yet
with pytest.raises(RuntimeError, match="not detected yet"):
provider.get_dimension()
# Detect dimension
await provider._detect_dimension()
# Now dimension should be available
assert provider.get_dimension() == 1536
@pytest.mark.unit
async def test_bedrock_cohere_embedding(mock_bedrock_client):
"""Test Bedrock with Cohere embedding model."""
# Mock response
mock_response = {
"body": MagicMock(
read=MagicMock(
return_value=json.dumps({"embeddings": [[0.1, 0.2, 0.3]]}).encode()
)
)
}
mock_bedrock_client.invoke_model.return_value = mock_response
provider = BedrockProvider(
region_name="us-east-1",
embedding_model="cohere.embed-english-v3",
)
embedding = await provider.embed("test text")
assert embedding == [0.1, 0.2, 0.3]
body = json.loads(mock_bedrock_client.invoke_model.call_args.kwargs["body"])
assert body == {"texts": ["test text"], "input_type": "search_document"}