"""Qdrant client wrapper."""
import logging
from qdrant_client import AsyncQdrantClient, models
from qdrant_client.models import Distance, VectorParams
from nextcloud_mcp_server.config import get_settings
logger = logging.getLogger(__name__)
# Singleton instance
_qdrant_client: AsyncQdrantClient | None = None
async def get_qdrant_client() -> AsyncQdrantClient:
"""
Get singleton Qdrant client instance.
Automatically creates collection on first use if it doesn't exist.
Supports three Qdrant modes:
- Network mode: QDRANT_URL set (e.g., http://qdrant:6333)
- In-memory mode: QDRANT_LOCATION=:memory: (default if nothing configured)
- Persistent local mode: QDRANT_LOCATION=/path/to/data
Returns:
Configured AsyncQdrantClient instance
Raises:
Exception: If Qdrant connection fails or collection creation fails
"""
global _qdrant_client
if _qdrant_client is None:
settings = get_settings()
# Detect mode and initialize client accordingly
if settings.qdrant_url:
# Network mode
logger.info(f"Using Qdrant network mode: {settings.qdrant_url}")
_qdrant_client = AsyncQdrantClient(
url=settings.qdrant_url,
api_key=settings.qdrant_api_key,
timeout=30,
)
elif settings.qdrant_location:
# Local mode (either :memory: or persistent path)
if settings.qdrant_location == ":memory:":
logger.info("Using Qdrant in-memory mode: :memory:")
_qdrant_client = AsyncQdrantClient(":memory:")
else:
# Persistent local mode - use path parameter
logger.info(f"Using Qdrant persistent mode: {settings.qdrant_location}")
_qdrant_client = AsyncQdrantClient(path=settings.qdrant_location)
else:
# Should not happen due to __post_init__ validation, but handle gracefully
logger.warning("No Qdrant mode configured, defaulting to :memory:")
_qdrant_client = AsyncQdrantClient(":memory:")
# Get collection name (auto-generated from deployment ID + model)
collection_name = settings.get_collection_name()
# Import here to avoid circular dependency
from nextcloud_mcp_server.embedding import get_embedding_service
embedding_service = get_embedding_service()
# Detect dimension dynamically (for OllamaEmbeddingProvider)
if hasattr(embedding_service.provider, "_detect_dimension"):
await embedding_service.provider._detect_dimension() # type: ignore[call-non-callable]
expected_dimension = embedding_service.get_dimension()
# Explicitly check if collection exists
logger.debug(f"Checking if collection '{collection_name}' exists...")
collections = await _qdrant_client.get_collections()
collection_names = [c.name for c in collections.collections]
if collection_name in collection_names:
# Collection exists - validate dimensions
logger.debug(
f"Collection '{collection_name}' found, validating dimensions..."
)
collection_info = await _qdrant_client.get_collection(collection_name)
# Handle both named vectors (dict) and legacy single vector
vectors = collection_info.config.params.vectors
if isinstance(vectors, dict):
actual_dimension = vectors["dense"].size
else:
# Type narrowing: vectors must be VectorParams if not dict
assert isinstance(vectors, VectorParams)
actual_dimension = vectors.size
# Validate dimension matches
if actual_dimension != expected_dimension:
embedding_model = settings.get_embedding_model_name()
raise ValueError(
f"Dimension mismatch for collection '{collection_name}':\n"
f" Expected: {expected_dimension} (from embedding model '{embedding_model}')\n"
f" Found: {actual_dimension}\n"
f"This usually means you changed the embedding model.\n"
f"Solutions:\n"
f" 1. Delete the old collection: Collection will be recreated with new dimensions\n"
f" 2. Set QDRANT_COLLECTION to use a different collection name\n"
f" 3. Revert to the original embedding model"
)
logger.info(
f"Using existing Qdrant collection: {collection_name} "
f"(dimension={actual_dimension}, model={settings.get_embedding_model_name()})"
)
else:
# Collection doesn't exist - create it
embedding_model = settings.get_embedding_model_name()
logger.info(
f"Collection '{collection_name}' not found, creating with "
f"dimension={expected_dimension}, model={embedding_model}..."
)
await _qdrant_client.create_collection(
collection_name=collection_name,
vectors_config={
"dense": VectorParams(
size=expected_dimension,
distance=Distance.COSINE,
),
},
sparse_vectors_config={
"sparse": models.SparseVectorParams(
index=models.SparseIndexParams(
on_disk=False,
)
),
},
)
logger.info(
f"Created Qdrant collection: {collection_name}\n"
f" Dense vector dimension: {expected_dimension}\n"
f" Dense embedding model: {embedding_model}\n"
f" Sparse vectors: BM25 (for hybrid search)\n"
f" Distance: COSINE\n"
f"Background sync will index all documents with dense + sparse vectors."
)
return _qdrant_client