"""Unified provider interface for embeddings and text generation."""
from abc import ABC, abstractmethod
class Provider(ABC):
"""
Unified base class for LLM providers.
Providers can support embeddings, text generation, or both.
Use capability properties to determine what features are available.
"""
@property
@abstractmethod
def supports_embeddings(self) -> bool:
"""Whether this provider supports embedding generation."""
pass
@property
@abstractmethod
def supports_generation(self) -> bool:
"""Whether this provider supports text generation."""
pass
@abstractmethod
async def embed(self, text: str) -> list[float]:
"""
Generate embedding vector for text.
Args:
text: Input text to embed
Returns:
Vector embedding as list of floats
Raises:
NotImplementedError: If provider doesn't support embeddings
"""
pass
@abstractmethod
async def embed_batch(self, texts: list[str]) -> list[list[float]]:
"""
Generate embeddings for multiple texts (optimized).
Args:
texts: List of texts to embed
Returns:
List of vector embeddings
Raises:
NotImplementedError: If provider doesn't support embeddings
"""
pass
@abstractmethod
def get_dimension(self) -> int:
"""
Get embedding dimension for this provider.
Returns:
Vector dimension (e.g., 768 for nomic-embed-text)
Raises:
NotImplementedError: If provider doesn't support embeddings
"""
pass
@abstractmethod
async def generate(self, prompt: str, max_tokens: int = 500) -> str:
"""
Generate text from a prompt.
Args:
prompt: The prompt to generate from
max_tokens: Maximum tokens to generate
Returns:
Generated text
Raises:
NotImplementedError: If provider doesn't support generation
"""
pass
@abstractmethod
async def close(self) -> None:
"""Close the provider and release resources."""
pass