import logging
import logging.config
import os
from dataclasses import dataclass
from enum import Enum
from typing import Any, Optional
class DeploymentMode(Enum):
"""Deployment mode for the MCP server.
SELF_HOSTED: Full features, environment-based configuration.
Supports vector sync, semantic search, admin UI.
SMITHERY_STATELESS: Stateless mode for Smithery hosting.
Session-based configuration, no persistent storage.
Excludes semantic search, vector sync, admin UI.
"""
SELF_HOSTED = "self_hosted"
SMITHERY_STATELESS = "smithery"
def get_deployment_mode() -> DeploymentMode:
"""Detect deployment mode from environment.
Returns:
DeploymentMode.SMITHERY_STATELESS if SMITHERY_DEPLOYMENT=true,
otherwise DeploymentMode.SELF_HOSTED (default).
"""
if os.getenv("SMITHERY_DEPLOYMENT", "false").lower() == "true":
return DeploymentMode.SMITHERY_STATELESS
return DeploymentMode.SELF_HOSTED
LOGGING_CONFIG = {
"version": 1,
"disable_existing_loggers": False,
"handlers": {
"default": {
"class": "logging.StreamHandler",
"formatter": "http",
},
},
"formatters": {
"http": {
"format": "%(levelname)s [%(asctime)s] %(name)s - %(message)s",
"datefmt": "%Y-%m-%d %H:%M:%S",
},
},
"loggers": {
"": {
"handlers": ["default"],
"level": "INFO",
},
"httpx": {
"handlers": ["default"],
"level": "INFO",
"propagate": False, # Prevent propagation to root logger
},
"httpcore": {
"handlers": ["default"],
"level": "INFO",
"propagate": False, # Prevent propagation to root logger
},
"uvicorn": {
"handlers": ["default"],
"level": "INFO",
"propagate": False,
},
"uvicorn.access": {
"handlers": ["default"],
"level": "INFO",
"propagate": False,
},
"uvicorn.error": {
"handlers": ["default"],
"level": "INFO",
"propagate": False,
},
},
}
def setup_logging():
logging.config.dictConfig(LOGGING_CONFIG)
# Document Processing Configuration
def get_document_processor_config() -> dict[str, Any]:
"""Get document processor configuration from environment.
Returns:
Dict with processor configs:
{
"enabled": bool,
"default_processor": str,
"processors": {
"unstructured": {...},
"tesseract": {...},
"custom": {...},
}
}
"""
config: dict[str, Any] = {
"enabled": os.getenv("ENABLE_DOCUMENT_PROCESSING", "false").lower() == "true",
"default_processor": os.getenv("DOCUMENT_PROCESSOR", "unstructured"),
"processors": {},
}
# Unstructured configuration
if os.getenv("ENABLE_UNSTRUCTURED", "false").lower() == "true":
config["processors"]["unstructured"] = {
"api_url": os.getenv("UNSTRUCTURED_API_URL", "http://unstructured:8000"),
"timeout": int(os.getenv("UNSTRUCTURED_TIMEOUT", "120")),
"strategy": os.getenv("UNSTRUCTURED_STRATEGY", "auto"),
"languages": [
lang.strip()
for lang in os.getenv("UNSTRUCTURED_LANGUAGES", "eng,deu").split(",")
if lang.strip()
],
"progress_interval": int(os.getenv("PROGRESS_INTERVAL", "10")),
}
# Tesseract configuration
if os.getenv("ENABLE_TESSERACT", "false").lower() == "true":
config["processors"]["tesseract"] = {
"tesseract_cmd": os.getenv("TESSERACT_CMD"), # None = auto-detect
"lang": os.getenv("TESSERACT_LANG", "eng"),
}
# PyMuPDF configuration (local PDF processing)
if os.getenv("ENABLE_PYMUPDF", "true").lower() == "true": # Enabled by default
config["processors"]["pymupdf"] = {
"extract_images": os.getenv("PYMUPDF_EXTRACT_IMAGES", "true").lower()
== "true",
"image_dir": os.getenv("PYMUPDF_IMAGE_DIR"), # None = use temp directory
}
# Custom processor (via HTTP API)
if os.getenv("ENABLE_CUSTOM_PROCESSOR", "false").lower() == "true":
custom_url = os.getenv("CUSTOM_PROCESSOR_URL")
if custom_url:
supported_types_str = os.getenv("CUSTOM_PROCESSOR_TYPES", "application/pdf")
supported_types = {
t.strip() for t in supported_types_str.split(",") if t.strip()
}
config["processors"]["custom"] = {
"name": os.getenv("CUSTOM_PROCESSOR_NAME", "custom"),
"api_url": custom_url,
"api_key": os.getenv("CUSTOM_PROCESSOR_API_KEY"),
"timeout": int(os.getenv("CUSTOM_PROCESSOR_TIMEOUT", "60")),
"supported_types": supported_types,
}
return config
@dataclass
class Settings:
"""Application settings from environment variables."""
# OAuth/OIDC settings
oidc_discovery_url: Optional[str] = None
oidc_client_id: Optional[str] = None
oidc_client_secret: Optional[str] = None
oidc_issuer: Optional[str] = None
# Nextcloud settings
nextcloud_host: Optional[str] = None
nextcloud_username: Optional[str] = None
nextcloud_password: Optional[str] = None
# ADR-005: Token Audience Validation (required for OAuth mode)
nextcloud_mcp_server_url: Optional[str] = None # MCP server URL (used as audience)
nextcloud_resource_uri: Optional[str] = None # Nextcloud resource identifier
# Token verification endpoints
jwks_uri: Optional[str] = None
introspection_uri: Optional[str] = None
userinfo_uri: Optional[str] = None
# Progressive Consent settings (always enabled - no flag needed)
enable_token_exchange: bool = False
enable_offline_access: bool = False
# Token exchange cache settings
token_exchange_cache_ttl: int = 300 # seconds (5 minutes default)
# Token and webhook storage settings
# TOKEN_ENCRYPTION_KEY: Optional - Only required for OAuth token storage operations.
# Webhook tracking works without encryption key.
# If set, must be a valid base64-encoded Fernet key (32 bytes).
# TOKEN_STORAGE_DB: Path to SQLite database for persistent storage.
# Used for webhook tracking (all modes) and OAuth token storage.
# Defaults to /tmp/tokens.db
token_encryption_key: Optional[str] = None
token_storage_db: Optional[str] = None
# Vector sync settings (ADR-007)
vector_sync_enabled: bool = False
vector_sync_scan_interval: int = 300 # seconds (5 minutes)
vector_sync_processor_workers: int = 3
vector_sync_queue_max_size: int = 10000
vector_sync_user_poll_interval: int = 60 # seconds - OAuth mode user discovery
# Qdrant settings (mutually exclusive modes)
qdrant_url: Optional[str] = None # Network mode: http://qdrant:6333
qdrant_location: Optional[str] = None # Local mode: :memory: or /path/to/data
qdrant_api_key: Optional[str] = None
qdrant_collection: str = "nextcloud_content"
# Ollama settings (for embeddings)
ollama_base_url: Optional[str] = None
ollama_embedding_model: str = "nomic-embed-text"
ollama_verify_ssl: bool = True
# OpenAI settings (for embeddings)
openai_api_key: Optional[str] = None
openai_base_url: Optional[str] = None
openai_embedding_model: str = "text-embedding-3-small"
# Document chunking settings (for vector embeddings)
document_chunk_size: int = 2048 # Characters per chunk
document_chunk_overlap: int = 200 # Overlapping characters between chunks
# Observability settings
metrics_enabled: bool = True
metrics_port: int = 9090
otel_exporter_otlp_endpoint: Optional[str] = None
otel_exporter_verify_ssl: bool = False
otel_service_name: str = "nextcloud-mcp-server"
otel_traces_sampler: str = "always_on"
otel_traces_sampler_arg: float = 1.0
log_format: str = "text" # "json" or "text"
log_level: str = "INFO"
log_include_trace_context: bool = True
def __post_init__(self):
"""Validate Qdrant configuration and set defaults."""
logger = logging.getLogger(__name__)
# Ensure mutual exclusivity
if self.qdrant_url and self.qdrant_location:
raise ValueError(
"Cannot set both QDRANT_URL and QDRANT_LOCATION. "
"Use QDRANT_URL for network mode or QDRANT_LOCATION for local mode."
)
# Default to :memory: if neither set
if not self.qdrant_url and not self.qdrant_location:
self.qdrant_location = ":memory:"
logger.debug("Using default Qdrant mode: in-memory (:memory:)")
# Warn if API key set in local mode
if self.qdrant_location and self.qdrant_api_key:
logger.warning(
"QDRANT_API_KEY is set but QDRANT_LOCATION is used (local mode). "
"API key is only relevant for network mode and will be ignored."
)
# Validate chunking configuration
if self.document_chunk_overlap >= self.document_chunk_size:
raise ValueError(
f"DOCUMENT_CHUNK_OVERLAP ({self.document_chunk_overlap}) must be less than "
f"DOCUMENT_CHUNK_SIZE ({self.document_chunk_size}). "
f"Overlap should be 10-20% of chunk size for optimal results."
)
if self.document_chunk_size < 512:
logger.warning(
f"DOCUMENT_CHUNK_SIZE is set to {self.document_chunk_size} characters, which is quite small. "
f"Smaller chunks may lose context. Consider using at least 1024 characters."
)
if self.document_chunk_overlap < 0:
raise ValueError(
f"DOCUMENT_CHUNK_OVERLAP ({self.document_chunk_overlap}) cannot be negative."
)
def get_embedding_model_name(self) -> str:
"""
Get the active embedding model name based on provider priority.
Priority order (same as ProviderRegistry):
1. OpenAI - if OPENAI_API_KEY is set
2. Ollama - if OLLAMA_BASE_URL is set
3. Simple - fallback (returns "simple-384")
Returns:
Active embedding model name
"""
# Check OpenAI first (higher priority than Ollama in registry)
if self.openai_api_key:
return self.openai_embedding_model
# Check Ollama
if self.ollama_base_url:
return self.ollama_embedding_model
# Fallback to simple provider indicator
return "simple-384"
def get_collection_name(self) -> str:
"""
Get Qdrant collection name.
Auto-generates from deployment ID + model name unless explicitly set.
Deployment ID uses OTEL_SERVICE_NAME if configured, otherwise hostname.
This enables:
- Safe embedding model switching (new model → new collection)
- Multi-server deployments (unique deployment IDs)
- Clear collection naming (shows deployment and model)
Format: {deployment-id}-{model-name}
Examples:
- "my-deployment-nomic-embed-text" (Ollama)
- "my-deployment-text-embedding-3-small" (OpenAI)
- "mcp-container-openai-text-embedding-3-small" (hostname fallback)
Returns:
Collection name string
"""
import socket
# Use explicit override if user configured non-default value
if self.qdrant_collection != "nextcloud_content":
return self.qdrant_collection
# Determine deployment ID (OTEL service name or hostname fallback)
if self.otel_service_name != "nextcloud-mcp-server": # Non-default
deployment_id = self.otel_service_name
else:
# Fallback to hostname for simple Docker deployments without OTEL config
deployment_id = socket.gethostname()
# Sanitize deployment ID and model name
deployment_id = deployment_id.lower().replace(" ", "-").replace("_", "-")
model_name = self.get_embedding_model_name().replace("/", "-").replace(":", "-")
return f"{deployment_id}-{model_name}"
def get_settings() -> Settings:
"""Get application settings from environment variables.
Returns:
Settings object with configuration values
"""
return Settings(
# OAuth/OIDC settings
oidc_discovery_url=os.getenv("OIDC_DISCOVERY_URL"),
oidc_client_id=os.getenv("NEXTCLOUD_OIDC_CLIENT_ID"),
oidc_client_secret=os.getenv("NEXTCLOUD_OIDC_CLIENT_SECRET"),
oidc_issuer=os.getenv("OIDC_ISSUER"),
# Nextcloud settings
nextcloud_host=os.getenv("NEXTCLOUD_HOST"),
nextcloud_username=os.getenv("NEXTCLOUD_USERNAME"),
nextcloud_password=os.getenv("NEXTCLOUD_PASSWORD"),
# ADR-005: Token Audience Validation
nextcloud_mcp_server_url=os.getenv("NEXTCLOUD_MCP_SERVER_URL"),
nextcloud_resource_uri=os.getenv("NEXTCLOUD_RESOURCE_URI"),
# Token verification endpoints
jwks_uri=os.getenv("JWKS_URI"),
introspection_uri=os.getenv("INTROSPECTION_URI"),
userinfo_uri=os.getenv("USERINFO_URI"),
# Progressive Consent settings (always enabled)
enable_token_exchange=(
os.getenv("ENABLE_TOKEN_EXCHANGE", "false").lower() == "true"
),
enable_offline_access=(
os.getenv("ENABLE_OFFLINE_ACCESS", "false").lower() == "true"
),
# Token exchange cache settings
token_exchange_cache_ttl=int(os.getenv("TOKEN_EXCHANGE_CACHE_TTL", "300")),
# Token and webhook storage settings (encryption key optional for webhook-only usage)
token_encryption_key=os.getenv("TOKEN_ENCRYPTION_KEY"),
token_storage_db=os.getenv("TOKEN_STORAGE_DB", "/tmp/tokens.db"),
# Vector sync settings (ADR-007)
vector_sync_enabled=(
os.getenv("VECTOR_SYNC_ENABLED", "false").lower() == "true"
),
vector_sync_scan_interval=int(os.getenv("VECTOR_SYNC_SCAN_INTERVAL", "300")),
vector_sync_processor_workers=int(
os.getenv("VECTOR_SYNC_PROCESSOR_WORKERS", "3")
),
vector_sync_queue_max_size=int(
os.getenv("VECTOR_SYNC_QUEUE_MAX_SIZE", "10000")
),
vector_sync_user_poll_interval=int(
os.getenv("VECTOR_SYNC_USER_POLL_INTERVAL", "60")
),
# Qdrant settings
qdrant_url=os.getenv("QDRANT_URL"),
qdrant_location=os.getenv("QDRANT_LOCATION"),
qdrant_api_key=os.getenv("QDRANT_API_KEY"),
qdrant_collection=os.getenv("QDRANT_COLLECTION", "nextcloud_content"),
# Ollama settings
ollama_base_url=os.getenv("OLLAMA_BASE_URL"),
ollama_embedding_model=os.getenv("OLLAMA_EMBEDDING_MODEL", "nomic-embed-text"),
ollama_verify_ssl=os.getenv("OLLAMA_VERIFY_SSL", "true").lower() == "true",
# OpenAI settings
openai_api_key=os.getenv("OPENAI_API_KEY"),
openai_base_url=os.getenv("OPENAI_BASE_URL"),
openai_embedding_model=os.getenv(
"OPENAI_EMBEDDING_MODEL", "text-embedding-3-small"
),
# Document chunking settings
document_chunk_size=int(os.getenv("DOCUMENT_CHUNK_SIZE", "2048")),
document_chunk_overlap=int(os.getenv("DOCUMENT_CHUNK_OVERLAP", "200")),
# Observability settings
metrics_enabled=os.getenv("METRICS_ENABLED", "true").lower() == "true",
metrics_port=int(os.getenv("METRICS_PORT", "9090")),
otel_exporter_otlp_endpoint=os.getenv("OTEL_EXPORTER_OTLP_ENDPOINT"),
otel_exporter_verify_ssl=os.getenv("OTEL_EXPORTER_VERIFY_SSL", "false").lower()
== "true",
otel_service_name=os.getenv("OTEL_SERVICE_NAME", "nextcloud-mcp-server"),
otel_traces_sampler=os.getenv("OTEL_TRACES_SAMPLER", "always_on"),
otel_traces_sampler_arg=float(os.getenv("OTEL_TRACES_SAMPLER_ARG", "1.0")),
log_format=os.getenv("LOG_FORMAT", "text"),
log_level=os.getenv("LOG_LEVEL", "INFO"),
log_include_trace_context=os.getenv("LOG_INCLUDE_TRACE_CONTEXT", "true").lower()
== "true",
)