Skip to main content
Glama
cbcoutinho

Nextcloud MCP Server

by cbcoutinho
algorithms.py7.97 kB
"""Base interfaces and data structures for search algorithms.""" from abc import ABC, abstractmethod from dataclasses import dataclass from typing import Any, Protocol, runtime_checkable @runtime_checkable class NextcloudClientProtocol(Protocol): """Protocol for Nextcloud client supporting multi-document search. This protocol defines the interface that search algorithms need from a Nextcloud client to access documents across different apps (Notes, Files, Calendar, etc.). The client provides access to app-specific sub-clients that handle the actual API calls. Document types (e.g., "note", "file", "calendar") are NOT 1:1 with apps. For example, the Notes app specializes in markdown files, while Files/WebDAV handles multiple file types. The abstraction is at the document type level. Search algorithms query Qdrant to determine which document types are actually indexed before attempting to access them, enabling graceful cross-app search. """ username: str # App-specific clients that search algorithms dispatch to @property def notes(self) -> Any: """Notes client for accessing note documents.""" ... @property def webdav(self) -> Any: """WebDAV client for accessing file documents.""" ... @property def calendar(self) -> Any: """Calendar client for accessing event/task documents.""" ... @property def contacts(self) -> Any: """Contacts client for accessing contact card documents.""" ... @property def deck(self) -> Any: """Deck client for accessing deck card documents.""" ... @property def cookbook(self) -> Any: """Cookbook client for accessing recipe documents.""" ... @property def tables(self) -> Any: """Tables client for accessing table row documents.""" ... async def get_indexed_doc_types(user_id: str) -> set[str]: """Query Qdrant to get actually-indexed document types for a user. This enables search algorithms to check which document types are available before attempting to search/verify them, allowing graceful cross-app search. Args: user_id: User ID to filter by Returns: Set of document type strings (e.g., {"note", "file", "calendar"}) Example: >>> types = await get_indexed_doc_types("alice") >>> if "note" in types: ... # Search notes """ import logging from qdrant_client.models import FieldCondition, Filter, MatchValue from nextcloud_mcp_server.config import get_settings from nextcloud_mcp_server.vector.placeholder import get_placeholder_filter from nextcloud_mcp_server.vector.qdrant_client import get_qdrant_client logger = logging.getLogger(__name__) settings = get_settings() qdrant_client = await get_qdrant_client() collection = settings.get_collection_name() # Use scroll to sample documents and extract doc_types # Note: This could be optimized with a facet/aggregation query if Qdrant adds support try: scroll_results, _next_offset = await qdrant_client.scroll( collection_name=collection, scroll_filter=Filter( must=[ get_placeholder_filter(), # Exclude placeholders from doc_type discovery FieldCondition(key="user_id", match=MatchValue(value=user_id)), ] ), limit=1000, # Sample size to discover types with_payload=["doc_type"], with_vectors=False, # Don't need vectors for type discovery ) doc_types: set[str] = { str(point.payload.get("doc_type")) for point in scroll_results if point.payload and point.payload.get("doc_type") } logger.debug(f"Found indexed document types for user {user_id}: {doc_types}") return doc_types except Exception as e: logger.warning(f"Failed to query Qdrant for doc_types: {e}") return set() @dataclass class SearchResult: """A single search result with metadata and score. Attributes: id: Document ID (int for all document types) doc_type: Document type (note, file, calendar, contact, etc.) title: Document title excerpt: Content excerpt showing match context score: Relevance score (≥ 0.0, higher is better) - RRF fusion: scores in [0.0, 1.0] - DBSF fusion: scores can exceed 1.0 (sum of normalized scores) metadata: Additional algorithm-specific metadata chunk_start_offset: Character position where chunk starts (None if not available) chunk_end_offset: Character position where chunk ends (None if not available) page_number: Page number for PDF documents (None for other doc types) page_count: Total number of pages in PDF document (None for other doc types) chunk_index: Zero-based index of this chunk in the document total_chunks: Total number of chunks in the document point_id: Qdrant point ID for batch vector retrieval (None if not from Qdrant) """ id: int doc_type: str title: str excerpt: str score: float metadata: dict[str, Any] | None = None chunk_start_offset: int | None = None chunk_end_offset: int | None = None page_number: int | None = None page_count: int | None = None chunk_index: int = 0 total_chunks: int = 1 point_id: str | None = None def __post_init__(self): """Validate score is non-negative. Note: Different fusion methods produce different score ranges: - RRF (Reciprocal Rank Fusion): Bounded to [0.0, 1.0] - DBSF (Distribution-Based Score Fusion): Unbounded (can exceed 1.0) DBSF sums normalized scores from multiple systems, so scores can be 1.5, 2.0, etc. when multiple systems agree a document is highly relevant. """ if self.score < 0.0: raise ValueError(f"Score must be non-negative, got {self.score}") class SearchAlgorithm(ABC): """Abstract base class for search algorithms. All search algorithms must implement the search() method with consistent interface, allowing them to be used interchangeably. Attributes: query_embedding: The query embedding generated during the last search. Available after search() completes for algorithms that use embeddings. Can be reused by callers to avoid redundant embedding generation. """ query_embedding: list[float] | None = None @abstractmethod async def search( self, query: str, user_id: str, limit: int = 10, doc_type: str | None = None, **kwargs: Any, ) -> list[SearchResult]: """Execute search with the given parameters. Args: query: Search query string user_id: User ID for multi-tenant filtering limit: Maximum number of results to return doc_type: Optional document type filter (note, file, calendar, etc.) **kwargs: Algorithm-specific parameters Returns: List of SearchResult objects ranked by relevance Raises: McpError: If search fails or configuration is invalid """ pass @property @abstractmethod def name(self) -> str: """Return algorithm name for identification.""" pass @property def supports_scoring(self) -> bool: """Whether this algorithm provides meaningful relevance scores. Default: True. Override if algorithm doesn't support scoring. """ return True @property def requires_vector_db(self) -> bool: """Whether this algorithm requires vector database. Default: False. Override for semantic search. """ return False

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/cbcoutinho/nextcloud-mcp-server'

If you have feedback or need assistance with the MCP directory API, please join our Discord server