Skip to main content
Glama
README.mdโ€ข10.4 kB
--- title: Delegation MCP emoji: ๐Ÿš€ colorFrom: blue colorTo: purple sdk: docker pinned: false license: mit short_description: Intelligent Multi-Agent Routing & Guidance tags: - mcp-server - building-mcp-track-enterprise - multi-agent - agent-orchestration --- # ๐Ÿš€ Delegation MCP Server **Intelligent Multi-Agent Routing & Guidance** [![Tests](https://img.shields.io/badge/tests-passing-brightgreen)]() [![License](https://img.shields.io/badge/license-MIT-blue)]() [![MCP](https://img.shields.io/badge/MCP-1.0-purple)]() [![Version](https://img.shields.io/badge/version-0.4.0-orange)]() [![Anthropic](https://img.shields.io/badge/Anthropic-Compliant-green)]() > *Built for the MCP 1st Birthday Hackathon - Winter 2025* ## โšก Quick Start ```bash # One command to install and configure everything python install.py ``` **That's it!** Restart Claude Code and start delegating: ``` "scan this codebase for security vulnerabilities" โ†’ MCP suggests: "Delegate to Gemini" โ†’ Claude executes: gemini scan . "design an authentication architecture" โ†’ MCP suggests: "Handle directly (Claude is best)" โ†’ Claude executes: (Internal reasoning) "refactor the delegation engine" โ†’ MCP suggests: "Delegate to Aider" โ†’ Claude executes: aider --message "refactor delegation engine" ``` **Features**: - โœ… **One-command installation** - 30 seconds to full setup - โœ… **Intelligent Routing** - Rules + Capabilities analysis - โœ… **Privacy-First** - Your code never passes through this server - โœ… **Lightweight** - Minimal footprint, no heavy databases - โœ… **Cross-platform** - Windows, Mac, Linux --- ## ๐ŸŽฎ Try the Interactive Demo **[![Hugging Face Spaces](https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Spaces-blue)](https://huggingface.co/spaces/Cduplar/multi-agent-mcp)** Experience the routing intelligence in action! Our HF Space demo lets you: ### Interactive Features: - ๐Ÿงช **Test Any Query** - See routing decisions in real-time - ๐Ÿ“Š **Routing Transparency** - View the complete decision-making process: - Task classification (security, architecture, refactoring, etc.) - Complexity assessment (simple/medium/complex) - Detected keywords and routing reasoning - CLI command that would be executed - โš™๏ธ **Live Configuration** - Toggle agents and routing strategies to see how settings affect decisions - ๐Ÿ’ก **Example Queries** - Simple and complex multi-step scenarios ### Try This: 1. Visit the [HF Space](https://huggingface.co/spaces/Cduplar/multi-agent-mcp) 2. Enter: *"Audit the authentication system for SQL injection, XSS, and CSRF vulnerabilities"* 3. Watch it route to Gemini with full reasoning 4. Disable Gemini in settings โ†’ See it route to Claude instead! **Want to test with real agents?** Duplicate the Space and add your API keys! --- ## ๐ŸŒŸ What Is This? A **lightweight MCP server** that acts as a routing intelligence layer for AI coding agents. Instead of executing tasks itself (which creates a bottleneck and security risk), it analyzes your request and **guides** your main agent (like Claude Code) on which tool to use. **Key Insight**: This follows the **Routing Guidance** pattern: 1. **Analyze**: The server analyzes the prompt (e.g., "audit security"). 2. **Route**: It determines the best agent based on your **presets** and **rules**. 3. **Guide**: It returns the *exact command* to run. 4. **Execute**: The client (Claude) executes the command directly. This ensures **zero lock-in**, **maximum privacy**, and **native performance**. --- ## ๐ŸŽฏ The Core Value Proposition ### Problem Developers manually switch between AI agents, losing context and productivity: - Claude for architecture - Gemini for security analysis - Aider for git operations - Copilot for GitHub integration ### Solution **One MCP server that tells your agent who to call:** ``` You โ†’ Claude Code โ†’ Delegation MCP โ†’ "Use Gemini for this" โ†’ Claude calls Gemini ``` **You work with ONE agent, but get the power of ALL agents.** --- ## ๐Ÿ“ฆ Installation ### Prerequisites - Python 3.10+ - At least one AI agent CLI installed: - [Gemini CLI](https://github.com/google/generative-ai-cli): `npm install -g @google/gemini-cli` - [Aider](https://aider.chat): `pip install aider-chat` - [Claude Code](https://claude.ai/download): `npm install -g @anthropic-ai/claude-code` - [GitHub Copilot](https://github.com/features/copilot): `npm install -g github/copilot` ### Automated Installation (Recommended) ```bash # Clone repository git clone https://github.com/carlosduplar/multi-agent-mcp.git cd multi-agent-mcp # One-command install python install.py # Or on Unix/Mac bash install.sh ``` The installer will: 1. Check system requirements 2. Discover installed agents 3. Configure Claude Code automatically 4. Verify everything works **Restart Claude Code and you're ready!** --- ## ๐ŸŽฏ How It Works ### Intelligent Routing Guidance We use a hybrid approach to determine the best agent for the job: 1. **Rule-Based Presets**: Your configured rules take priority (e.g., "Always use Gemini for security"). 2. **Capability Analysis**: If no rule matches, we analyze agent capabilities to find the best fit. **Query**: "scan for vulnerabilities" 1. **Check Rules**: Matches `security_audit` preset? -> **Gemini** 2. **Guide**: Return guidance to use Gemini ### Example Interaction **User**: "Audit my authentication code for SQL injection" **Claude Code** calls `get_routing_guidance`: ```json { "query": "Audit auth.py for SQL injection" } ``` **MCP Server** responds: ```json { "decision": "DELEGATE_TO: gemini", "agent": "gemini", "task_type": "security_audit", "cli_command": "gemini \"Audit auth.py for SQL injection\"" } ``` **Claude Code** then executes: ```bash gemini "Audit auth.py for SQL injection" ``` --- ## ๐Ÿ”ง MCP Tools ### `get_routing_guidance` Get routing guidance for a task. Returns which agent should handle it and the exact CLI command to run. ```python { "query": "Audit auth.py for SQL injection" } ``` ### `discover_agents` Automatically discover available CLI agents on the system and register them. ```python { "force_refresh": false # Optional: force re-discovery } ``` ### `list_agents` List all registered agents and their availability status. ### โšก Token Overhead One of the key advantages of this MCP server is its **minimal context footprint**. Here's the actual token usage: ``` MCP Tools: โ”œโ”€ get_routing_guidance: 601 tokens โ”œโ”€ discover_agents: 584 tokens โ””โ”€ list_agents: 554 tokens โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€ Total MCP overhead: 1,739 tokens (0.9% of 200k context) ``` **What this means**: - โœ… Less than 1% of your context budget - โœ… Leaves 99%+ for actual code and conversation - โœ… No heavy prompts or bloated instructions - โœ… Intelligent routing without sacrificing context Compare this to running multiple agent instances or complex orchestration frameworks that can consume 10-20% of your context just for coordination overhead. --- ## ๐Ÿ—๏ธ Architecture ``` โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ” โ”‚ Claude Code (or other MCP client) โ”‚ โ”‚ - User chats here โ”‚ โ”‚ - Calls get_routing_guidance โ”‚ โ”‚ - EXECUTES the returned command โ”‚ โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ฌโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜ โ”‚ MCP Protocol (stdio) โ–ผ โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ” โ”‚ Delegation MCP Server โ”‚ โ”‚ - Analyzes task complexity & type โ”‚ โ”‚ - Checks rules & capabilities โ”‚ โ”‚ - Returns guidance (NO EXECUTION) โ”‚ โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜ ``` ### v0.4.0 - Lightweight Architecture **Privacy & Security**: - **No Code Execution**: The server never executes code or commands. It only suggests them. - **No Data Persistence**: No databases or logs of your code are kept by the server. - **Direct Connection**: Your agent talks directly to the delegated tool (e.g., Claude -> Gemini). **Agent Auto-Discovery**: - Automatically detects installed CLI agents (Claude, Gemini, Aider, etc.) - Verifies agent availability - Graceful error handling --- ## ๐Ÿ—‚๏ธ Project Structure ``` multi-agent-mcp/ โ”œโ”€โ”€ src/delegation_mcp/ โ”‚ โ”œโ”€โ”€ server.py # MCP server (Routing Guidance) โญ โ”‚ โ”œโ”€โ”€ delegation.py # Routing logic & scoring โ”‚ โ”œโ”€โ”€ orchestrator.py # Agent registry โ”‚ โ”œโ”€โ”€ agent_discovery.py # System scanner for agents โ”‚ โ”œโ”€โ”€ tool_discovery.py # Tool definitions โ”‚ โ”œโ”€โ”€ config.py # Configuration handling โ”‚ โ”œโ”€โ”€ cli.py # CLI tools โ”‚ โ””โ”€โ”€ adapters/ # Agent definitions โ”‚ โ”œโ”€โ”€ claude.py โ”‚ โ”œโ”€โ”€ gemini.py โ”‚ โ”œโ”€โ”€ copilot.py โ”‚ โ””โ”€โ”€ aider.py โ”œโ”€โ”€ tools/ # Tool definitions (JSON) โ”œโ”€โ”€ tests/ # Comprehensive tests โ””โ”€โ”€ config/ # Default delegation rules ``` --- ## ๐Ÿš€ Roadmap ### โœ… Phase 1: Foundation (COMPLETE) - MCP server with routing guidance - Capability-based routing - Agent auto-discovery - Production-grade architecture ### ๐Ÿ”œ Phase 2: Intelligence (Q1 2026) - ML-powered routing - Learning from user feedback - Custom agent definitions ### ๐Ÿ”ฎ Phase 3: Collaboration (Q2 2026) - Complex multi-step workflows - Parallel agent execution guidance --- ## ๐Ÿค Contributing We welcome contributions! Add new agent adapters, improve routing logic, or enhance documentation. --- ## ๐Ÿ“„ License MIT License - see [LICENSE](LICENSE) --- ## ๐ŸŽฏ The Vision > **"You work with ONE agent, but get the power of ALL agents."** Today's AI landscape has amazing specialists, but they work in silos. **Delegation MCP changes that.** It's the intelligence layer that lets agents collaborate, creating something greater than the sum of its parts. --- **Built with โค๏ธ for the MCP ecosystem**

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/carlosduplar/multi-agent-mcp'

If you have feedback or need assistance with the MCP directory API, please join our Discord server