README.mdโข10.4 kB
---
title: Delegation MCP
emoji: ๐
colorFrom: blue
colorTo: purple
sdk: docker
pinned: false
license: mit
short_description: Intelligent Multi-Agent Routing & Guidance
tags:
- mcp-server
- building-mcp-track-enterprise
- multi-agent
- agent-orchestration
---
# ๐ Delegation MCP Server
**Intelligent Multi-Agent Routing & Guidance**
[]() []() []() []() []()
> *Built for the MCP 1st Birthday Hackathon - Winter 2025*
## โก Quick Start
```bash
# One command to install and configure everything
python install.py
```
**That's it!** Restart Claude Code and start delegating:
```
"scan this codebase for security vulnerabilities"
โ MCP suggests: "Delegate to Gemini"
โ Claude executes: gemini scan .
"design an authentication architecture"
โ MCP suggests: "Handle directly (Claude is best)"
โ Claude executes: (Internal reasoning)
"refactor the delegation engine"
โ MCP suggests: "Delegate to Aider"
โ Claude executes: aider --message "refactor delegation engine"
```
**Features**:
- โ
**One-command installation** - 30 seconds to full setup
- โ
**Intelligent Routing** - Rules + Capabilities analysis
- โ
**Privacy-First** - Your code never passes through this server
- โ
**Lightweight** - Minimal footprint, no heavy databases
- โ
**Cross-platform** - Windows, Mac, Linux
---
## ๐ฎ Try the Interactive Demo
**[](https://huggingface.co/spaces/Cduplar/multi-agent-mcp)**
Experience the routing intelligence in action! Our HF Space demo lets you:
### Interactive Features:
- ๐งช **Test Any Query** - See routing decisions in real-time
- ๐ **Routing Transparency** - View the complete decision-making process:
- Task classification (security, architecture, refactoring, etc.)
- Complexity assessment (simple/medium/complex)
- Detected keywords and routing reasoning
- CLI command that would be executed
- โ๏ธ **Live Configuration** - Toggle agents and routing strategies to see how settings affect decisions
- ๐ก **Example Queries** - Simple and complex multi-step scenarios
### Try This:
1. Visit the [HF Space](https://huggingface.co/spaces/Cduplar/multi-agent-mcp)
2. Enter: *"Audit the authentication system for SQL injection, XSS, and CSRF vulnerabilities"*
3. Watch it route to Gemini with full reasoning
4. Disable Gemini in settings โ See it route to Claude instead!
**Want to test with real agents?** Duplicate the Space and add your API keys!
---
## ๐ What Is This?
A **lightweight MCP server** that acts as a routing intelligence layer for AI coding agents. Instead of executing tasks itself (which creates a bottleneck and security risk), it analyzes your request and **guides** your main agent (like Claude Code) on which tool to use.
**Key Insight**: This follows the **Routing Guidance** pattern:
1. **Analyze**: The server analyzes the prompt (e.g., "audit security").
2. **Route**: It determines the best agent based on your **presets** and **rules**.
3. **Guide**: It returns the *exact command* to run.
4. **Execute**: The client (Claude) executes the command directly.
This ensures **zero lock-in**, **maximum privacy**, and **native performance**.
---
## ๐ฏ The Core Value Proposition
### Problem
Developers manually switch between AI agents, losing context and productivity:
- Claude for architecture
- Gemini for security analysis
- Aider for git operations
- Copilot for GitHub integration
### Solution
**One MCP server that tells your agent who to call:**
```
You โ Claude Code โ Delegation MCP โ "Use Gemini for this" โ Claude calls Gemini
```
**You work with ONE agent, but get the power of ALL agents.**
---
## ๐ฆ Installation
### Prerequisites
- Python 3.10+
- At least one AI agent CLI installed:
- [Gemini CLI](https://github.com/google/generative-ai-cli): `npm install -g @google/gemini-cli`
- [Aider](https://aider.chat): `pip install aider-chat`
- [Claude Code](https://claude.ai/download): `npm install -g @anthropic-ai/claude-code`
- [GitHub Copilot](https://github.com/features/copilot): `npm install -g github/copilot`
### Automated Installation (Recommended)
```bash
# Clone repository
git clone https://github.com/carlosduplar/multi-agent-mcp.git
cd multi-agent-mcp
# One-command install
python install.py
# Or on Unix/Mac
bash install.sh
```
The installer will:
1. Check system requirements
2. Discover installed agents
3. Configure Claude Code automatically
4. Verify everything works
**Restart Claude Code and you're ready!**
---
## ๐ฏ How It Works
### Intelligent Routing Guidance
We use a hybrid approach to determine the best agent for the job:
1. **Rule-Based Presets**: Your configured rules take priority (e.g., "Always use Gemini for security").
2. **Capability Analysis**: If no rule matches, we analyze agent capabilities to find the best fit.
**Query**: "scan for vulnerabilities"
1. **Check Rules**: Matches `security_audit` preset? -> **Gemini**
2. **Guide**: Return guidance to use Gemini
### Example Interaction
**User**: "Audit my authentication code for SQL injection"
**Claude Code** calls `get_routing_guidance`:
```json
{
"query": "Audit auth.py for SQL injection"
}
```
**MCP Server** responds:
```json
{
"decision": "DELEGATE_TO: gemini",
"agent": "gemini",
"task_type": "security_audit",
"cli_command": "gemini \"Audit auth.py for SQL injection\""
}
```
**Claude Code** then executes:
```bash
gemini "Audit auth.py for SQL injection"
```
---
## ๐ง MCP Tools
### `get_routing_guidance`
Get routing guidance for a task. Returns which agent should handle it and the exact CLI command to run.
```python
{
"query": "Audit auth.py for SQL injection"
}
```
### `discover_agents`
Automatically discover available CLI agents on the system and register them.
```python
{
"force_refresh": false # Optional: force re-discovery
}
```
### `list_agents`
List all registered agents and their availability status.
### โก Token Overhead
One of the key advantages of this MCP server is its **minimal context footprint**. Here's the actual token usage:
```
MCP Tools:
โโ get_routing_guidance: 601 tokens
โโ discover_agents: 584 tokens
โโ list_agents: 554 tokens
โโโโโโโโโ
Total MCP overhead: 1,739 tokens (0.9% of 200k context)
```
**What this means**:
- โ
Less than 1% of your context budget
- โ
Leaves 99%+ for actual code and conversation
- โ
No heavy prompts or bloated instructions
- โ
Intelligent routing without sacrificing context
Compare this to running multiple agent instances or complex orchestration frameworks that can consume 10-20% of your context just for coordination overhead.
---
## ๐๏ธ Architecture
```
โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
โ Claude Code (or other MCP client) โ
โ - User chats here โ
โ - Calls get_routing_guidance โ
โ - EXECUTES the returned command โ
โโโโโโโโโโโโโโโโฌโโโโโโโโโโโโโโโโโโโโโโโโโโโ
โ MCP Protocol (stdio)
โผ
โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
โ Delegation MCP Server โ
โ - Analyzes task complexity & type โ
โ - Checks rules & capabilities โ
โ - Returns guidance (NO EXECUTION) โ
โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
```
### v0.4.0 - Lightweight Architecture
**Privacy & Security**:
- **No Code Execution**: The server never executes code or commands. It only suggests them.
- **No Data Persistence**: No databases or logs of your code are kept by the server.
- **Direct Connection**: Your agent talks directly to the delegated tool (e.g., Claude -> Gemini).
**Agent Auto-Discovery**:
- Automatically detects installed CLI agents (Claude, Gemini, Aider, etc.)
- Verifies agent availability
- Graceful error handling
---
## ๐๏ธ Project Structure
```
multi-agent-mcp/
โโโ src/delegation_mcp/
โ โโโ server.py # MCP server (Routing Guidance) โญ
โ โโโ delegation.py # Routing logic & scoring
โ โโโ orchestrator.py # Agent registry
โ โโโ agent_discovery.py # System scanner for agents
โ โโโ tool_discovery.py # Tool definitions
โ โโโ config.py # Configuration handling
โ โโโ cli.py # CLI tools
โ โโโ adapters/ # Agent definitions
โ โโโ claude.py
โ โโโ gemini.py
โ โโโ copilot.py
โ โโโ aider.py
โโโ tools/ # Tool definitions (JSON)
โโโ tests/ # Comprehensive tests
โโโ config/ # Default delegation rules
```
---
## ๐ Roadmap
### โ
Phase 1: Foundation (COMPLETE)
- MCP server with routing guidance
- Capability-based routing
- Agent auto-discovery
- Production-grade architecture
### ๐ Phase 2: Intelligence (Q1 2026)
- ML-powered routing
- Learning from user feedback
- Custom agent definitions
### ๐ฎ Phase 3: Collaboration (Q2 2026)
- Complex multi-step workflows
- Parallel agent execution guidance
---
## ๐ค Contributing
We welcome contributions! Add new agent adapters, improve routing logic, or enhance documentation.
---
## ๐ License
MIT License - see [LICENSE](LICENSE)
---
## ๐ฏ The Vision
> **"You work with ONE agent, but get the power of ALL agents."**
Today's AI landscape has amazing specialists, but they work in silos. **Delegation MCP changes that.** It's the intelligence layer that lets agents collaborate, creating something greater than the sum of its parts.
---
**Built with โค๏ธ for the MCP ecosystem**