task_mapper.py•16.4 kB
"""Task-to-agent mapping with intelligent suggestions.
This module provides functionality for mapping task categories to agents
with intelligent suggestions based on agent capabilities and routing strategies.
"""
import logging
from typing import TypedDict
from rich.console import Console
from rich.prompt import Confirm, Prompt
from rich.table import Table
from .agent_profiles import (
get_agent_profile,
ROUTING_PRESETS,
DEFAULT_ROUTING_RULES,
RoutingPreset
)
logger = logging.getLogger(__name__)
console = Console()
class TaskCategory(TypedDict):
"""Definition of a task category."""
key: str
name: str
description: str
pattern_examples: list[str]
# Task categories for delegation
TASK_CATEGORIES: list[TaskCategory] = [
{
"key": "security_audit",
"name": "Security Audit",
"description": "Security audits, vulnerability scans, safety checks",
"pattern_examples": [
"security", "vulnerability", "audit", "CVE", "harden", "secure", "protect",
"lock down", "access control", "permissions", "rules", "firestore rules",
"authentication", "authorization", "encrypt", "expose", "leak", "breach",
"attack", "threat", "OWASP", "XSS", "injection", "sanitize", "exploit",
],
},
{
"key": "code_review",
"name": "Code Review",
"description": "Code quality review, best practices analysis",
"pattern_examples": [
"review", "code quality", "best practices", "lint", "improve", "clean up",
"tech debt", "smell", "anti-pattern", "convention", "standards",
"maintainability", "readability", "code analysis",
],
},
{
"key": "architecture",
"name": "Architecture",
"description": "System design, architecture planning, complex reasoning",
"pattern_examples": [
"architecture", "design", "system design", "structure", "organize", "plan",
"approach", "strategy", "pattern", "blueprint", "diagram", "flow", "schema",
],
},
{
"key": "refactoring",
"name": "Refactoring",
"description": "Code refactoring, cleanup, optimization",
"pattern_examples": [
"refactor", "cleanup", "optimize code", "rename", "restructure", "reorganize",
"simplify", "DRY", "extract", "inline", "consolidate", "modularize",
],
},
{
"key": "quick_fix",
"name": "Quick Fixes",
"description": "Rapid bug fixes, small code changes",
"pattern_examples": [
"fix", "bug", "quick change", "error", "crash", "broken", "not working",
"issue", "problem", "patch", "hotfix",
],
},
{
"key": "documentation",
"name": "Documentation",
"description": "README files, API docs, code comments",
"pattern_examples": [
"documentation", "docs", "README", "comments", "comment", "explain", "describe",
"guide", "tutorial", "how-to", "API docs", "docstring", "examples",
],
},
{
"key": "testing",
"name": "Testing",
"description": "Unit tests, integration tests, test coverage",
"pattern_examples": [
"test", "testing", "coverage", "unit test", "integration test", "e2e",
"spec", "assertion", "mock", "stub", "test case", "test suite",
],
},
{
"key": "performance",
"name": "Performance",
"description": "Performance analysis and optimization",
"pattern_examples": [
"performance", "optimize", "speed", "slow", "latency", "throughput",
"bottleneck", "profiling", "benchmark", "memory", "CPU", "scalability",
],
},
{
"key": "browser_interaction",
"name": "Browser Interaction",
"description": "Browser automation, web scraping, UI testing",
"pattern_examples": ["browser", "selenium", "playwright", "chrome"],
},
{
"key": "git_operations",
"name": "Git Operations",
"description": "Git workflows, repository management",
"pattern_examples": [
"git", "commit", "merge", "branch", "push", "pull", "rebase", "cherry-pick",
"stash", "tag", "history", "checkout", "reset", "revert",
],
},
{
"key": "shell_tasks",
"name": "Shell/Terminal",
"description": "Shell scripting, terminal commands",
"pattern_examples": [
"shell", "terminal", "bash", "script", "command", "CLI", "automation",
"cron", "env", "environment variables", "path", "execute",
],
},
{
"key": "exploration",
"name": "Code Exploration",
"description": "Code exploration, dependency tracing, implementation analysis",
"pattern_examples": ["how does", "trace the flow", "what files implement", "understand the implementation", "map dependencies"],
},
{
"key": "debugging",
"name": "Debugging",
"description": "Bug investigation, error analysis, root cause identification",
"pattern_examples": ["debug", "why is failing", "investigate", "find the cause", "troubleshoot"],
},
{
"key": "impact_analysis",
"name": "Impact Analysis",
"description": "Dependency analysis, usage finding, breaking change assessment",
"pattern_examples": ["what would break", "find all usages", "what depends on", "impact of changing", "all references"],
},
{
"key": "general",
"name": "General Tasks",
"description": "Default for tasks that don't fit specific categories",
"pattern_examples": ["general", "misc", "other"],
},
]
class TaskMapper:
"""Manages task-to-agent mapping during installation."""
def __init__(self):
"""Initialize the task mapper."""
self.task_mappings: dict[str, str] = {}
self.selected_strategy: str = "balanced"
def select_strategy(self) -> str:
"""
Prompt user to select a routing strategy.
Returns:
Selected strategy key
"""
console.print("\n[bold]Delegation Strategy[/bold]")
console.print("Choose how tasks should be distributed among agents:\n")
table = Table(show_header=True, header_style="bold magenta")
table.add_column("Option", style="cyan", justify="center")
table.add_column("Strategy", style="green")
table.add_column("Description", style="white")
table.add_column("Priorities", style="yellow")
strategies = list(ROUTING_PRESETS.items())
for i, (key, preset) in enumerate(strategies, 1):
priorities = f"Cost: {preset['cost_priority']}, Quality: {preset['quality_priority']}"
table.add_row(str(i), preset["name"], preset["description"], priorities)
console.print(table)
console.print("\n")
choices = [str(i) for i in range(1, len(strategies) + 1)]
default_idx = [k for k, _ in strategies].index("balanced") + 1
selection = Prompt.ask(
"Select strategy",
choices=choices,
default=str(default_idx)
)
selected_key = strategies[int(selection) - 1][0]
self.selected_strategy = selected_key
console.print(f"\n[green]✓[/green] Selected: {ROUTING_PRESETS[selected_key]['name']}\n")
return selected_key
def suggest_mappings(self, agent_names: list[str], strategy_key: str) -> dict[str, tuple[str, str]]:
"""
Generate intelligent mapping suggestions based on strategy and agent capabilities.
Args:
agent_names: List of available agent names
strategy_key: Key of the selected routing strategy
Returns:
Dictionary of task_key -> (suggested_agent, reasoning)
"""
suggestions: dict[str, tuple[str, str]] = {}
preset = ROUTING_PRESETS[strategy_key]
# Helper to find best agent from a list of preferred ones
def find_best_available(preferred: list[str], fallback_reason: str) -> tuple[str, str]:
for agent in preferred:
if agent in agent_names:
# Find specific reason from rules if available
return agent, fallback_reason
# Fallback logic based on strategy
if preset["cost_priority"] == "high":
# Prefer free/local agents
for agent in agent_names:
profile = get_agent_profile(agent)
if profile["cost_tier"] == "free":
return agent, "Selected for cost efficiency"
if preset["quality_priority"] == "high":
# Prefer Claude/Gemini
for agent in ["claude", "gemini"]:
if agent in agent_names:
return agent, "Selected for high quality"
# Default to first available
return agent_names[0], "Best available option"
for category in TASK_CATEGORIES:
task_key = category["key"]
# Get default rule
rule = DEFAULT_ROUTING_RULES.get(task_key)
if not rule:
suggestions[task_key] = (agent_names[0], "Default assignment")
continue
# Apply strategy overrides
preferred = rule["preferred"]
reason = rule["reason"]
if strategy_key == "cost_optimized":
# Prioritize free agents
free_agents = [a for a in agent_names if get_agent_profile(a)["cost_tier"] == "free"]
if free_agents:
preferred = free_agents + preferred
reason = "Cost optimized choice"
elif strategy_key == "speed_first":
# Prioritize fast agents
fast_agents = [a for a in agent_names if get_agent_profile(a)["response_speed"] == "fast"]
if fast_agents:
preferred = fast_agents + preferred
reason = "Optimized for speed"
elif strategy_key == "token_saver":
# Prioritize large context or concise agents
# (Simplified logic: prefer Gemini for context, Aider for conciseness)
if task_key in ["architecture", "exploration"]:
preferred = ["gemini"] + preferred
reason = "Large context window"
else:
preferred = ["aider"] + preferred
reason = "Concise responses"
# Find best agent
agent, final_reason = find_best_available(preferred, reason)
suggestions[task_key] = (agent, final_reason)
return suggestions
def display_suggestions(
self,
suggestions: dict[str, tuple[str, str]],
agent_names: list[str]
) -> None:
"""
Display mapping suggestions in a formatted table.
Args:
suggestions: Dictionary of task_key -> (agent, reasoning)
agent_names: List of available agent names for context
"""
table = Table(
title=f"Suggested Mappings ({ROUTING_PRESETS[self.selected_strategy]['name']})",
show_header=True,
header_style="bold magenta"
)
table.add_column("Task Category", style="cyan", no_wrap=True)
table.add_column("Suggested Agent", style="green")
table.add_column("Reasoning", style="yellow")
# Create task key to category mapping for lookup
category_map = {cat["key"]: cat for cat in TASK_CATEGORIES}
for task_key, (agent, reasoning) in suggestions.items():
category = category_map.get(task_key)
if category:
task_name = category["name"]
table.add_row(task_name, agent, reasoning)
console.print("\n")
console.print(table)
console.print("\n")
def prompt_task_assignments(
self,
agent_names: list[str],
suggestions: dict[str, tuple[str, str]]
) -> dict[str, str]:
"""
Interactive prompt for task-to-agent assignment.
Args:
agent_names: List of available agent names
suggestions: Pre-computed suggestions
Returns:
Dictionary of task_key -> agent_name
"""
self.display_suggestions(suggestions, agent_names)
console.print("[bold]Task Assignment Configuration[/bold]")
console.print("You can accept all suggestions or customize individual mappings.\n")
# Ask if user wants to use all suggestions
accept_all = Confirm.ask(
"Accept all suggested mappings?",
default=True
)
if accept_all:
self.task_mappings = {
task_key: agent
for task_key, (agent, _) in suggestions.items()
}
console.print("\n[green]✓[/green] Using all suggested mappings\n")
return self.task_mappings
# Custom assignment
console.print("\nCustomize task assignments:\n")
self.task_mappings = {}
# Create task key to category mapping
category_map = {cat["key"]: cat for cat in TASK_CATEGORIES}
for task_key, (suggested_agent, reasoning) in suggestions.items():
category = category_map.get(task_key)
if not category:
continue
task_name = category["name"]
description = category["description"]
console.print(f"\n[cyan]{task_name}[/cyan]: {description}")
console.print(f" Suggested: [green]{suggested_agent}[/green] ({reasoning})")
# Ask if user wants to change
use_suggestion = Confirm.ask(
f" Use {suggested_agent} for {task_name}?",
default=True
)
if use_suggestion:
self.task_mappings[task_key] = suggested_agent
console.print(f" [green]✓[/green] Assigned to {suggested_agent}")
else:
# Let user pick an agent
console.print(f" Available agents: {', '.join(agent_names)}")
while True:
chosen_agent = Prompt.ask(
f" Select agent for {task_name}",
choices=agent_names,
default=suggested_agent
)
if chosen_agent in agent_names:
self.task_mappings[task_key] = chosen_agent
console.print(f" [green]✓[/green] Assigned to {chosen_agent}")
break
else:
console.print(f" [red]✗[/red] Invalid agent. Please choose from: {', '.join(agent_names)}")
console.print(f"\n[green]✓[/green] Task assignment configuration complete\n")
return self.task_mappings
def get_task_mappings(self) -> dict[str, str]:
"""
Get the task-to-agent mappings.
Returns:
Dictionary of task_key -> agent_name
"""
return self.task_mappings
def map_tasks(self, agent_names: list[str]) -> dict[str, str]:
"""
Complete task mapping flow with suggestions and user input.
Args:
agent_names: List of available agent names
Returns:
Dictionary of task_key -> agent_name
"""
if len(agent_names) < 2:
logger.warning("Need at least 2 agents for task mapping")
return {}
# Select strategy
strategy_key = self.select_strategy()
# Generate suggestions based on strategy
suggestions = self.suggest_mappings(agent_names, strategy_key)
# Get user assignments
return self.prompt_task_assignments(agent_names, suggestions)