Skip to main content
Glama

Activity Reporting MCP Server

README.md5.54 kB
# Activity Reporting MCP Server ## Motivation This project empowers Google Developer Experts (GDEs) to effortlessly report their activities through AI-powered conversational interfaces. By integrating the Advocu API with the Model Context Protocol (MCP), GDEs can now submit their content creation, speaking engagements, workshops, mentoring sessions, and other activities directly through AI chat models or command-line tools. This streamlines the reporting process, making it more intuitive and accessible while maintaining the detailed tracking that the GDE program requires. A Model Context Protocol (MCP) server for reporting activities to the Advocu GDE API. ## Quick Installation ### Using NPM ```bash npm install -g advocu-mcp-server ``` ### Using npx (Recommended: No Installation Required) ```bash npx advocu-mcp-server ``` ## Configuration ### Prerequisites - Node.js 18+ - Advocu GDE API access token ### Step 1: Configure Claude Desktop Edit your Claude Desktop configuration file: **macOS**: `~/Library/Application Support/Claude/claude_desktop_config.json` **Windows**: `%APPDATA%/Claude/claude_desktop_config.json` #### Option A: Using Global Installation ```json { "mcpServers": { "activity-reporting": { "command": "advocu-mcp-server", "env": { "ADVOCU_ACCESS_TOKEN": "your_advocu_token_here" } } } } ``` #### Option B: Using npx ```json { "mcpServers": { "activity-reporting": { "command": "npx", "args": ["-y", "advocu-mcp-server"], "env": { "ADVOCU_ACCESS_TOKEN": "your_advocu_token_here" } } } } ``` ### Step 2: Restart Claude Desktop Close and reopen Claude Desktop to load the new configuration. ## Alternative: Local Development Setup If you want to contribute or modify the server: ```bash git clone https://github.com/carlosazaustre/advocu-mcp-server.git cd advocu-mcp-server npm install npm run build ``` Then configure Claude Desktop with the local path: ```json { "mcpServers": { "activity-reporting": { "command": "node", "args": ["/absolute/path/to/advocu-mcp-server/dist/index.js"], "env": { "ADVOCU_ACCESS_TOKEN": "your_advocu_token_here" } } } } ``` ## Available Tools Once configured, you'll have access to these tools in Claude: - **submit_content_creation** - Report content creation activities - **submit_public_speaking** - Report public speaking engagements - **submit_workshop** - Report workshop sessions - **submit_mentoring** - Report mentoring activities - **submit_product_feedback** - Report product feedback submissions - **submit_googler_interaction** - Report interactions with Google employees - **submit_story** - Report success stories ## Usage Examples In Claude, you can use commands like: ``` "Submit a content creation activity for my blog post about React hooks published on Medium" "Create a public speaking draft for my presentation at ReactConf 2024" "Report a mentoring session I had with 3 junior developers about TypeScript" ``` ## API Reference For detailed information about all available endpoints, parameters, and data formats, see the [API Documentation](docs/API.md). ## Development ### Development mode ```bash npm run dev ``` ### Build ```bash npm run build ``` ### Lint and format ```bash npm run lint npm run format ``` ## Rate Limiting The API has a limit of 30 requests per minute. The server automatically handles 429 errors. ## Project Structure ``` advocu-mcp-server/ ├── src/ │ ├── index.ts # Entry point │ ├── server.ts # Main server class │ ├── interfaces/ # Activity draft interfaces │ │ ├── ActivityDraftBase.ts │ │ ├── ContentCreationDraft.ts │ │ ├── GooglerInteractionDraft.ts │ │ ├── MentoringDraft.ts │ │ ├── ProductFeedbackDraft.ts │ │ ├── PublicSpeakingDraft.ts │ │ ├── StoryDraft.ts │ │ └── WorkshopDraft.ts │ └── types/ # Type definitions │ ├── ContentType.ts │ ├── Country.ts │ ├── EventFormat.ts │ ├── InteractionFormat.ts │ ├── InteractionType.ts │ ├── ProductFeedbackContentType.ts │ ├── SignificanceType.ts │ └── Tag.ts ├── dist/ # Compiled output ├── docs/ # Documentation │ └── API.md ├── package.json ├── tsconfig.json └── README.md ``` ## Troubleshooting ### Error: "Command not found" - Verify that the path in `claude_desktop_config.json` is absolute - Ensure the file is executable: `chmod +x dist/index.js` ### Error: "Authentication failed" - Verify that your token in `.env` is correct - The token must have permissions for the Personal API ### Error: "ADVOCU_ACCESS_TOKEN is not set" - Make sure your `.env` file exists in the project root - Verify the token is properly set in the `.env` file ### Error: "Rate limit exceeded" - Wait one minute before making more requests - The API limits to 30 requests per minute ## Contributing 1. Fork the project 2. Create a feature branch: `git checkout -b feature/new-feature` 3. Commit your changes: `git commit -am 'Add new feature'` 4. Push to the branch: `git push origin feature/new-feature` 5. Create a Pull Request ## License MIT License - see LICENSE file for details.

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/carlosazaustre/advocu-mcp-server'

If you have feedback or need assistance with the MCP directory API, please join our Discord server