Skip to main content
Glama
cipher.ymlβ€’4.11 kB
# List of MCP servers to use # mcpServers: # filesystem: # type: stdio # command: npx # args: # - -y # - '@modelcontextprotocol/server-filesystem' # - . # If not specified, please set it like this: mcpServers: {} llm: provider: openai model: gpt-4.1-mini apiKey: $OPENAI_API_KEY maxIterations: 50 # provider: gemini # model: gemini-2.5-flash # apiKey: $GEMINI_API_KEY # maxIterations: 50 # provider: anthropic # model: claude-3-5-haiku-20241022 # apiKey: $ANTHROPIC_API_KEY # maxIterations: 50 # provider: openrouter # model: google/gemini-2.5-pro # apiKey: $OPENROUTER_API_KEY # maxIterations: 50 # provider: qwen # model: qwen3-14b # apiKey: $QWEN_API_KEY # maxIterations: 50 # qwenOptions: # enableThinking: false # --- AWS Bedrock LLM Configuration --- # provider: aws # model: us.anthropic.claude-3-5-sonnet-20241022-v2:0 # Or another Bedrock-supported model # maxIterations: 50 # aws: # region: $AWS_REGION # accessKeyId: $AWS_ACCESS_KEY_ID # secretAccessKey: $AWS_SECRET_ACCESS_KEY # sessionToken: $AWS_SESSION_TOKEN # Optional, for temporary credentials # --- Azure OpenAI LLM Configuration --- # provider: azure # model: gpt-4o-mini # Or your Azure deployment/model name # apiKey: $AZURE_OPENAI_API_KEY # maxIterations: 50 # azure: # endpoint: $AZURE_OPENAI_ENDPOINT # deploymentName: gpt-4o-mini # Optional, defaults to model name # --- Ollama LLM Configuration (Sample, Commented Out) --- # provider: ollama # model: qwen3:8b # Use the model you downloaded # maxIterations: 50 # baseURL: $OLLAMA_BASE_URL # --- LM Studio LLM Configuration (Sample, Commented Out) --- # provider: lmstudio # model: hermes-2-pro-llama-3-8b # Use the model you have loaded # maxIterations: 50 # baseURL: $LMSTUDIO_BASE_URL # Embedding configuration: ONLY ONE of the following # OpenAI: # embedding: # type: openai # model: text-embedding-3-small # apiKey: $OPENAI_API_KEY # Gemini: # embedding: # type: gemini # model: gemini-embedding-001 # apiKey: $GEMINI_API_KEY # Ollama: # embedding: # type: ollama # model: mxbai-embed-large # baseUrl: $OLLAMA_BASE_URL # dimensions: 1024 # LM Studio: # embedding: # type: lmstudio # model: nomic-embed-text-v1.5 # baseUrl: $LMSTUDIO_BASE_URL # Voyage (for Anthropic/Claude users): # embedding: # type: voyage # model: voyage-3-large #(1024, 256, 512, 2048) # apiKey: $VOYAGE_API_KEY # dimensions: 1024 # Qwen: # embedding: # type: qwen # model: text-embedding-v3 # apiKey: $QWEN_API_KEY # dimensions: 1024 # (1024, 768 or 512) # AWS Bedrock: # embedding: # type: aws-bedrock # model: amazon.titan-embed-text-v2:0 # or cohere.embed-english-v3 # region: $AWS_REGION # accessKeyId: $AWS_ACCESS_KEY_ID # secretAccessKey: $AWS_SECRET_ACCESS_KEY # sessionToken: $AWS_SESSION_TOKEN # Optional, for temporary credentials # dimensions: 1024 # 1024 (default), 512, or 256 for Titan V2 # timeout: 30000 # maxRetries: 3 # Azure OpenAI: # embedding: # type: openai # model: text-embedding-3-small # apiKey: $AZURE_OPENAI_API_KEY # baseUrl: $AZURE_OPENAI_ENDPOINT # e.g., https://your-resource.openai.azure.com # dimensions: 1536 # Optional: depends on model # timeout: 30000 # maxRetries: 3 # Disable embeddings entirely: # embedding: # disabled: true # Evaluation LLM configuration (non-thinking model for evaluation step) # evalLlm: # provider: anthropic # model: claude-3-7-sonnet-20250219 # apiKey: $ANTHROPIC_API_KEY # System prompt - User customizable # This prompt will be combined with built-in tool usage instructions systemPrompt: enabled: true content: | You are an AI programming assistant focused on coding and reasoning tasks. You excel at: - Writing clean, efficient code - Debugging and problem-solving - Code review and optimization - Explaining complex technical concepts - Reasoning through programming challenges

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/campfirein/cipher'

If you have feedback or need assistance with the MCP directory API, please join our Discord server