Skip to main content
Glama
llm-providers.mdβ€’5.64 kB
# LLM Providers Cipher supports multiple LLM providers for flexible deployment options. Configure your preferred provider in `memAgent/cipher.yml`: ## OpenAI ```yaml llm: provider: openai model: gpt-4-turbo apiKey: $OPENAI_API_KEY ``` All OpenAI models are supported. Visit [OpenAI API documentation](https://platform.openai.com/docs/models) for the complete list of available models. ## Anthropic Claude ```yaml llm: provider: anthropic model: claude-3-5-sonnet-20241022 apiKey: $ANTHROPIC_API_KEY ``` All Anthropic Claude models are supported. Visit [Anthropic documentation](https://docs.anthropic.com/en/docs/about-claude/models) for the complete list of available models. ## OpenRouter Access to 200+ models through OpenRouter's unified API: ```yaml llm: provider: openrouter model: openai/gpt-4-turbo # Any OpenRouter model apiKey: $OPENROUTER_API_KEY ``` All models available through OpenRouter are supported. Visit [OpenRouter Models](https://openrouter.ai/models) for the complete list of available models and their specifications. ## Ollama (Self-Hosted, No API Key) Run models locally with Ollama: ```yaml llm: provider: ollama model: qwen2.5:32b # Recommended for best performance baseURL: $OLLAMA_BASE_URL ``` All Ollama models are supported. Visit [Ollama Models](https://ollama.com/models) to browse available models or use `ollama list` to see installed models. **Setup:** 1. Install Ollama: `curl -fsSL https://ollama.com/install.sh | sh` 2. Pull a model: `ollama pull <model-name>` 3. Start Ollama: `ollama serve` ## LM Studio (Self-Hosted, No API Key - Now with Embedding Support!) ```yaml llm: provider: lmstudio model: hermes-2-pro-llama-3-8b # e.g. TheBloke/Mistral-7B-Instruct-v0.2-GGUF # No apiKey required # Optionally override the baseURL if not using the default # baseURL: http://localhost:1234/v1 # OPTIONAL: Configure specific embedding model # If not specified, Cipher will automatically try: # 1. Same model as LLM (if it supports embeddings) # 2. Default embedding model # 3. OpenAI fallback (if OPENAI_API_KEY available) embedding: provider: lmstudio model: your-embedding-model # Optional - smart fallback if not specified # baseURL: http://localhost:1234/v1 ``` > **Note:** LM Studio is fully OpenAI-compatible and now supports both LLM and embedding models! By default, Cipher will connect to LM Studio at `http://localhost:1234/v1`. No API key is required. > > **Model Support**: All models available in LM Studio are supported, including both LLM and embedding models in GGUF format. > > **Smart Fallback Logic:** > > 1. **First try**: Uses the same model loaded for LLM as the embedding model (many models support both) > 2. **Second try**: Falls back to a default embedding model if the LLM model doesn't support embeddings > 3. **Final fallback**: Uses OpenAI embeddings when available ## Alibaba Cloud Qwen ```yaml llm: provider: qwen model: qwen2.5-72b-instruct apiKey: $QWEN_API_KEY qwenOptions: enableThinking: true # Enable Qwen's thinking mode thinkingBudget: 1000 # Thinking budget for complex reasoning ``` All Qwen models available through DashScope are supported. Visit [Qwen documentation](https://help.aliyun.com/zh/dashscope/developer-reference/model-square) for the complete list. - **Thinking Mode**: Enable deep reasoning with `enableThinking: true` - **Thinking Budget**: Control reasoning depth with `thinkingBudget` ## AWS Bedrock (Amazon Bedrock) ```yaml llm: provider: aws model: meta.llama3-1-70b-instruct-v1:0 # Or another Bedrock-supported model maxIterations: 50 aws: region: $AWS_REGION accessKeyId: $AWS_ACCESS_KEY_ID secretAccessKey: $AWS_SECRET_ACCESS_KEY # sessionToken: $AWS_SESSION_TOKEN # (uncomment if needed) ``` > **Required environment variables:** > > - `AWS_REGION` > - `AWS_ACCESS_KEY_ID` > - `AWS_SECRET_ACCESS_KEY` > - `AWS_SESSION_TOKEN` (optional, for temporary credentials) All models available on AWS Bedrock are supported. Visit [AWS Bedrock documentation](https://docs.aws.amazon.com/bedrock/latest/userguide/model-ids.html) for the complete list of available models. ## Azure OpenAI ```yaml llm: provider: azure model: gpt-4o-mini # Or your Azure deployment/model name apiKey: $AZURE_OPENAI_API_KEY maxIterations: 50 azure: endpoint: $AZURE_OPENAI_ENDPOINT deploymentName: gpt-4o-mini # Optional, defaults to model name ``` > **Required environment variables:** > > - `AZURE_OPENAI_API_KEY` > - `AZURE_OPENAI_ENDPOINT` **Setup Notes:** - Use your Azure deployment name as the model - The `deploymentName` field is optional and defaults to the model name - Ensure your deployment has sufficient quota ## Environment Variables Create a `.env` file in your project root with the necessary API keys: ```bash # OpenAI OPENAI_API_KEY=sk-your-openai-key # Anthropic ANTHROPIC_API_KEY=sk-ant-your-anthropic-key # OpenRouter OPENROUTER_API_KEY=sk-or-your-openrouter-key # Qwen QWEN_API_KEY=your-qwen-api-key # AWS AWS_REGION=us-east-1 AWS_ACCESS_KEY_ID=your-access-key AWS_SECRET_ACCESS_KEY=your-secret-key # Azure AZURE_OPENAI_API_KEY=your-azure-key AZURE_OPENAI_ENDPOINT=https://your-resource.openai.azure.com # Ollama (optional, defaults to localhost) OLLAMA_BASE_URL=http://localhost:11434 # Voyage (for embedding fallback) VOYAGE_API_KEY=your-voyage-key ``` ## Related Documentation - [Configuration](./configuration.md) - Main configuration guide - [Embedding Configuration](./embedding-configuration.md) - Embedding setup for each provider - [Vector Stores](./vector-stores.md) - Vector database configuration

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/campfirein/cipher'

If you have feedback or need assistance with the MCP directory API, please join our Discord server