Skip to main content
Glama

MCP Recommender

by bxzymy
README.md•4.44 kB
# MCP Recommender A smart MCP (Model Context Protocol) server that provides intelligent recommendations for other MCP servers based on your development needs. ## Features - šŸ” **Smart Search**: Find MCP servers using natural language queries - šŸ“Š **Rich Database**: Access to 874+ curated MCP servers across 36+ categories - šŸŽÆ **Intelligent Matching**: Advanced scoring algorithm for relevant recommendations - šŸ·ļø **Category Filtering**: Filter by specific categories and programming languages - šŸš€ **Easy Integration**: Simple setup with uv package manager - šŸ”§ **Multiple Interfaces**: Support for both CLI and MCP client integration ## Installation ### Using uv (Recommended) ```bash # Clone the repository git clone https://github.com/mcp-team/mcp-recommender.git cd mcp-recommender # Install with uv uv sync # Test the installation uv run -m mcp_recommender --test ``` ### Using pip ```bash pip install mcp-recommender ``` ## Usage ### Command Line Interface ```bash # Test mode - verify installation and see sample recommendations uv run -m mcp_recommender --test # Server mode - start the MCP server uv run -m mcp_recommender --server # Debug mode - detailed diagnostic information uv run -m mcp_recommender --debug ``` ### MCP Client Integration Add to your MCP client configuration: ```json { "mcpServers": { "mcp-recommender": { "isActive": true, "name": "mcp-recommender", "type": "stdio", "command": "uv", "args": [ "--directory", "/path/to/mcp-recommender", "run", "-m", "mcp_recommender" ] } } } ``` ### Available Tools Once integrated, you can use these tools in your MCP client: #### `recommend_mcp` Get intelligent MCP server recommendations based on your needs. **Parameters:** - `query` (string): Description of functionality you need - `limit` (integer, optional): Maximum number of recommendations (default: 5) - `category` (string, optional): Filter by specific category - `language` (string, optional): Filter by programming language **Example:** ``` recommend_mcp("database operations with SQLite", limit=3) ``` #### `list_categories` List all available MCP categories with counts. #### `get_functional_keywords` Show functional keyword mappings for better search results. ## Categories The recommender covers 36+ categories including: - **Developer Tools** (120+ servers) - **Databases** (79+ servers) - **Search & Data Extraction** (69+ servers) - **Cloud Platforms** (39+ servers) - **Security** (39+ servers) - **Communication** (36+ servers) - **Browser Automation** (23+ servers) - **Knowledge & Memory** (22+ servers) - And many more... ## Development ### Setup Development Environment ```bash # Clone and setup git clone https://github.com/mcp-team/mcp-recommender.git cd mcp-recommender # Install development dependencies uv sync --dev # Run tests uv run pytest # Build package uv build ``` ### Project Structure ``` mcp-recommender/ ā”œā”€ā”€ mcp_recommender/ # Main package │ ā”œā”€ā”€ __init__.py │ ā”œā”€ā”€ __main__.py # CLI entry point │ ā”œā”€ā”€ server.py # MCP server implementation │ └── data/ # MCP database and keywords │ ā”œā”€ā”€ mcp_database.json │ └── functional_keywords.json ā”œā”€ā”€ tests/ # Test suite ā”œā”€ā”€ LICENSE # MIT License ā”œā”€ā”€ README.md # This file └── pyproject.toml # Package configuration ``` ## Contributing 1. Fork the repository 2. Create a feature branch (`git checkout -b feature/amazing-feature`) 3. Commit your changes (`git commit -m 'Add amazing feature'`) 4. Push to the branch (`git push origin feature/amazing-feature`) 5. Open a Pull Request ## License This project is licensed under the MIT License - see the [LICENSE](LICENSE) file for details. ## Acknowledgments - Built with [FastMCP](https://github.com/jlowin/fastmcp) framework - MCP database curated from the awesome MCP community - Powered by the [Model Context Protocol](https://modelcontextprotocol.io/) ## Support - šŸ“– [Documentation](https://github.com/mcp-team/mcp-recommender#readme) - šŸ› [Issue Tracker](https://github.com/mcp-team/mcp-recommender/issues) - šŸ’¬ [Discussions](https://github.com/mcp-team/mcp-recommender/discussions) --- Made with ā¤ļø by the MCP community

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/bxzymy/mcp-recommend'

If you have feedback or need assistance with the MCP directory API, please join our Discord server