Skip to main content
Glama

video-editing-mcp

import logging import os import subprocess import sys import threading import time from typing import List, Optional, Union, Any, Dict import json import webbrowser import uuid import mcp.server.stdio import mcp.types as types import osxphotos import requests from mcp.server import NotificationOptions, Server from mcp.server.models import InitializationOptions from pydantic import AnyUrl from transformers import AutoModel from videojungle import ApiClient from .search_local_videos import get_videos_by_keyword import numpy as np if os.environ.get("VJ_API_KEY"): VJ_API_KEY = os.environ.get("VJ_API_KEY") else: try: VJ_API_KEY = sys.argv[1] except Exception: VJ_API_KEY = None BROWSER_OPEN = False # Configure the logging logging.basicConfig( filename="app.log", # Name of the log file level=logging.INFO, # Log level (e.g., DEBUG, INFO, WARNING, ERROR, CRITICAL) format="%(asctime)s - %(levelname)s - %(message)s", # Log format ) if not VJ_API_KEY: try: with open(".env", "r") as f: for line in f: if "VJ_API_KEY" in line: VJ_API_KEY = line.split("=")[1] except Exception: raise Exception( "VJ_API_KEY environment variable is required or a .env file with the key is required" ) raise Exception("VJ_API_KEY environment variable is required") vj = ApiClient(VJ_API_KEY) class PhotosDBLoader: def __init__(self): self._db: Optional[osxphotos.PhotosDB] = None self.start_loading() def start_loading(self): def load(): self._db = osxphotos.PhotosDB() logging.info("PhotosDB loaded") thread = threading.Thread(target=load) thread.daemon = True # Make thread exit when main program exits thread.start() @property def db(self) -> osxphotos.PhotosDB: if self._db is None: raise Exception("PhotosDB still loading") return self._db class EmbeddingModelLoader: def __init__(self, model_name: str = "jinaai/jina-clip-v1"): self._model: Optional[AutoModel] = None self.model_name = model_name self.start_loading() def start_loading(self): def load(): self._model = AutoModel.from_pretrained( self.model_name, trust_remote_code=True ) logging.info(f"Model {self.model_name} loaded") thread = threading.Thread(target=load) thread.daemon = True thread.start() @property def model(self) -> AutoModel: if self._model is None: raise Exception(f"Model {self.model_name} still loading") return self._model def encode_text( self, texts: Union[str, List[str]], truncate_dim: Optional[int] = None, task: Optional[str] = None, ) -> dict: """ Encode text and format the embeddings in the expected JSON structure """ embeddings = self.model.encode_text(texts, truncate_dim=truncate_dim, task=task) # Format the response in the expected structure return {"embeddings": embeddings.tolist(), "embedding_type": "text_embeddings"} def encode_image( self, images: Union[str, List[str]], truncate_dim: Optional[int] = None ) -> dict: """ Encode images and format the embeddings in the expected JSON structure """ embeddings = self.model.encode_image(images, truncate_dim=truncate_dim) return {"embeddings": embeddings.tolist(), "embedding_type": "image_embeddings"} def post_embeddings( self, embeddings: dict, endpoint_url: str, headers: Optional[dict] = None ) -> requests.Response: """ Post embeddings to the specified endpoint """ if headers is None: headers = {"Content-Type": "application/json"} response = requests.post(endpoint_url, json=embeddings, headers=headers) response.raise_for_status() return response # Create global loader instance, (requires access to host computer!) if sys.platform == "darwin" and os.environ.get("LOAD_PHOTOS_DB"): photos_loader = PhotosDBLoader() model_loader = EmbeddingModelLoader() server = Server("video-jungle-mcp") try: # videos_at_start = vj.video_files.list() projects_at_start = vj.projects.list() except Exception as e: logging.error(f"Error getting projects at start: {e}") videos_at_start = [] counter = 10 # Cache for pagination with timestamps for cleanup _search_result_cache: Dict[str, Dict] = {} _project_assets_cache: Dict[str, Dict] = {} _CACHE_TTL = 60 * 4 # 4 minute cache TTL # Function to clean old cache entries def cleanup_cache(): """Remove cache entries older than TTL.""" current_time = time.time() search_keys_to_remove = [] project_keys_to_remove = [] # Clean search cache for key, cache_entry in _search_result_cache.items(): if current_time - cache_entry["timestamp"] > _CACHE_TTL: search_keys_to_remove.append(key) for key in search_keys_to_remove: del _search_result_cache[key] # Clean project assets cache for key, cache_entry in _project_assets_cache.items(): if current_time - cache_entry["timestamp"] > _CACHE_TTL: project_keys_to_remove.append(key) for key in project_keys_to_remove: del _project_assets_cache[key] total_removed = len(search_keys_to_remove) + len(project_keys_to_remove) if total_removed > 0: logging.info( f"Cleaned up {len(search_keys_to_remove)} expired search caches and {len(project_keys_to_remove)} project asset caches" ) tools = [ "add-video", "search-local-videos", "search-remote-videos", "generate-edit-from-videos", "get-project-assets", "create-videojungle-project", "create-video-bar-chart-from-two-axis-data", "create-video-line-chart-from-two-axis-data", "edit-locally", "generate-edit-from-single-video", "update-video-edit", ] def validate_y_values(y_values: Any) -> bool: """ Validates that y_values is a single-dimensional array/list of numbers. Args: y_values: The input to validate Returns: bool: True if validation passes Raises: ValueError: If validation fails with a descriptive message """ # Check if input is a list or numpy array if not isinstance(y_values, (list, np.ndarray)): raise ValueError("y_values must be a list") # Convert to numpy array for easier handling y_array = np.array(y_values) # Check if it's multi-dimensional if len(y_array.shape) > 1: raise ValueError("y_values must be a single-dimensional array") # Check if all elements are numeric if not np.issubdtype(y_array.dtype, np.number): raise ValueError("all elements in y_values must be numbers") # Check for NaN or infinite values if np.any(np.isnan(y_array)) or np.any(np.isinf(y_array)): raise ValueError("y_values cannot contain NaN or infinite values") return True @server.list_resources() async def handle_list_resources() -> list[types.Resource]: """ List available video files. Each video files is available at a specific url """ global counter, projects_at_start counter += 1 # check to see if DaVinci Resolve is open # We do this counter because otherwise Claude is very aggressive # about requests if counter % 100 == 0: projects = vj.projects.list() projects_at_start = projects counter = 0 """ videos = [ types.Resource( uri=AnyUrl(f"vj://video-file/{video.id}"), name=f"Video Jungle Video: {video.name}", description=f"User provided description: {video.description}", mimeType="video/mp4", ) for video in videos_at_start ]""" projects = [ types.Resource( uri=AnyUrl(f"vj://projects/{project.id}"), name=f"Video Jungle Project: {project.name}", description=f"Project description: {project.description}", mimeType="application/json", ) for project in projects_at_start ] return projects # videos # + projects @server.read_resource() async def handle_read_resource(uri: AnyUrl) -> str: """ Read a video's content by its URI. The video id is extracted from the URI host component. """ if uri.scheme != "vj": raise ValueError(f"Unsupported URI scheme: {uri.scheme}") id = uri.path if id is not None: id = id.lstrip("/projects/") proj = vj.projects.get(id) logging.info(f"project is: {proj}") return proj.model_dump_json() raise ValueError(f"Project not found: {id}") @server.list_prompts() async def handle_list_prompts() -> list[types.Prompt]: """ List available prompts. Each prompt can have optional arguments to customize its behavior. """ return [ types.Prompt( name="generate-local-search", description="Generate a local search for videos using appropriate label names from the Photos app.", arguments=[ types.PromptArgument( name="search_query", description="Natural language query to be translated into Photos app label names.", required=False, ) ], ) ] @server.get_prompt() async def handle_get_prompt( name: str, arguments: dict[str, str] | None ) -> types.GetPromptResult: """ Generate a prompt by combining arguments with server state. The prompt includes all current notes and can be customized via arguments. """ if name != "generate-local-search": raise ValueError(f"Unknown prompt: {name}") if not arguments: raise ValueError("Missing arguments") search_query = arguments.get("search_query") if not search_query: raise ValueError("Missing search_query") return types.GetPromptResult( description="Generate a local search for videos using appropriate label names from the Photos app.", messages=[ types.PromptMessage( role="user", content=types.TextContent( type="text", text=f"Here are the exact label names you need to match in your query:\n\n For the specific query: {search_query}, you should use the following labels: {photos_loader.db.labels_as_dict} for the search-local-videos tool", ), ) ], ) @server.list_tools() async def handle_list_tools() -> list[types.Tool]: """ List available tools. Each tool specifies its arguments using JSON Schema validation. """ if os.environ.get("LOAD_PHOTOS_DB"): return [ types.Tool( name="create-videojungle-project", description="Create a new Video Jungle project to create video edits, add videos, assets, and more.", inputSchema={ "type": "object", "properties": { "name": { "type": "string", "description": "Name of the project", }, "description": { "type": "string", "description": "Description of the project", }, }, }, ), types.Tool( name="edit-locally", description="Create an OpenTimelineIO file for local editing with the user's desktop video editing suite.", inputSchema={ "type": "object", "properties": { "edit_id": { "type": "string", "description": "UUID of the edit to download", }, "project_id": { "type": "string", "description": "UUID of the project the video edit lives within", }, }, "required": ["edit_id", "project_id"], }, ), types.Tool( name="add-video", description="Upload video from URL. Begins analysis of video to allow for later information retrieval for automatic video editing an search.", inputSchema={ "type": "object", "properties": { "name": {"type": "string"}, "url": {"type": "string"}, }, "required": ["name", "url"], }, ), types.Tool( name="search-remote-videos", description="Default method to search videos. Will return videos including video_ids, which allow for information retrieval and building video edits. For large result sets, you can paginate through chunks using search_id and page parameters.", inputSchema={ "type": "object", "properties": { "query": {"type": "string", "description": "Text search query"}, "limit": { "type": "integer", "default": 10, "minimum": 1, "description": "Maximum number of results to return per page", }, "project_id": { "type": "string", "format": "uuid", "description": "Project ID to scope the search", }, "duration_min": { "type": "number", "minimum": 0, "description": "Minimum video duration in seconds", }, "duration_max": { "type": "number", "minimum": 0, "description": "Maximum video duration in seconds", }, "search_id": { "type": "string", "description": "ID of a previous search to continue pagination. If provided, returns the next chunk of results", }, "page": { "type": "integer", "default": 1, "minimum": 1, "description": "Page number to retrieve when paginating through results", }, "items_per_page": { "type": "integer", "default": 5, "minimum": 1, "maximum": 20, "description": "Number of items to show per page when paginating", }, "created_after": { "type": "string", "format": "date-time", "description": "Filter videos created after this datetime", }, "created_before": { "type": "string", "format": "date-time", "description": "Filter videos created before this datetime", }, "tags": { "type": "array", "items": {"type": "string"}, "description": "Set of tags to filter by", }, "include_segments": { "type": "boolean", "default": True, "description": "Whether to include video segments in results", }, "include_related": { "type": "boolean", "default": False, "description": "Whether to include related videos", }, "query_audio": { "type": "string", "description": "Audio search query", }, "query_img": { "type": "string", "description": "Image search query", }, }, }, ), types.Tool( name="search-local-videos", description="Search user's local videos in Photos app by keyword", inputSchema={ "type": "object", "properties": { "keyword": {"type": "string"}, "start_date": { "type": "string", "description": "ISO 8601 formatted datetime string (e.g. 2024-01-21T15:30:00Z)", }, "end_date": { "type": "string", "description": "ISO 8601 formatted datetime string (e.g. 2024-01-21T15:30:00Z)", }, }, "required": ["keyword"], }, ), types.Tool( name="generate-edit-from-videos", description="Generate an edit from videos, from within a specific project. Creates a new project to work within no existing project ID (UUID) is passed ", inputSchema={ "type": "object", "properties": { "project_id": { "type": "string", "description": "Either an existing Project UUID or String. A UUID puts the edit in an existing project, and a string creates a new project with that name.", }, "name": {"type": "string", "description": "Video Edit name"}, "open_editor": { "type": "boolean", "description": "Open a live editor with the project's edit", }, "resolution": { "type": "string", "description": "Video resolution. Examples include '1920x1080', '1280x720'", }, "render_subtiles": { "type": "boolean", "description": "Whether to render subtitiles in the video edit", "default": True, }, "edit": { "type": "array", "items": { "type": "object", "properties": { "video_id": { "type": "string", "description": "Video UUID", }, "video_start_time": { "type": "string", "description": "Clip start time in 00:00:00.000 format", }, "video_end_time": { "type": "string", "description": "Clip end time in 00:00:00.000 format", }, "type": { "type": "string", "description": "Type of asset ('videofile' for video files, or 'user' for project specific assets)", }, "audio_levels": { "type": "array", "description": "Optional audio level adjustments for this clip", "items": { "type": "object", "properties": { "audio_level": { "type": "string", "description": "Audio level (0.0 to 1.0)", } }, }, }, }, }, "description": "Array of video clips to include in the edit", }, "audio_asset": { "type": "object", "properties": { "audio_id": { "type": "string", "description": "Audio asset UUID", }, "type": { "type": "string", "description": "Audio file type (e.g., 'mp3', 'wav')", }, "filename": { "type": "string", "description": "Audio file name", }, "audio_start_time": { "type": "string", "description": "Audio start time in 00:00:00.000 format", }, "audio_end_time": { "type": "string", "description": "Audio end time in 00:00:00.000 format", }, "url": { "type": "string", "description": "Optional URL for the audio file", }, "audio_levels": { "type": "array", "description": "Optional audio level adjustments", "items": {"type": "object"}, }, }, "description": "Optional audio overlay for the video edit", }, }, "required": ["edit", "name", "project_id"], }, ), types.Tool( name="generate-edit-from-single-video", description="Generate a compressed video edit from a single video.", inputSchema={ "type": "object", "properties": { "project_id": {"type": "string"}, "resolution": {"type": "string"}, "video_id": {"type": "string"}, "render_subtiles": { "type": "boolean", "description": "Whether to render subtitiles in the video edit", "default": True, }, "edit": { "type": "array", "items": { "type": "object", "properties": { "video_start_time": { "type": "string", "description": "Clip start time in 00:00:00.000 format", }, "video_end_time": { "type": "string", "description": "Clip end time in 00:00:00.000 format", }, }, }, "description": "Array of time segments to extract from the video", }, }, "required": ["edit", "project_id", "video_id"], }, ), types.Tool( name="update-video-edit", description="Update an existing video edit within a specific project.", inputSchema={ "type": "object", "properties": { "project_id": { "type": "string", "description": "UUID of the project containing the edit", }, "edit_id": { "type": "string", "description": "UUID of the video edit to update", }, "name": {"type": "string", "description": "Video Edit name"}, "description": { "type": "string", "description": "Description of the video edit", }, "video_output_format": { "type": "string", "description": "Output format for the video (e.g., 'mp4', 'webm')", }, "video_output_resolution": { "type": "string", "description": "Video resolution. Examples include '1920x1080', '1280x720'", }, "video_output_fps": { "type": "number", "description": "Frames per second for the output video", }, "video_series_sequential": { "type": "array", "description": "Array of video clips in sequential order", "items": { "type": "object", "properties": { "video_id": { "type": "string", "description": "Video UUID", }, "video_start_time": { "type": "string", "description": "Clip start time in 00:00:00.000 format", }, "video_end_time": { "type": "string", "description": "Clip end time in 00:00:00.000 format", }, "audio_levels": { "type": "array", "description": "Optional audio level adjustments for this clip", "items": { "type": "object", "properties": { "audio_level": { "type": "string", "description": "Audio level (0.0 to 1.0)", } }, }, }, }, }, }, "audio_overlay": { "type": "object", "description": "Audio overlay settings and assets", }, "rendered": { "type": "boolean", "description": "Whether the edit has been rendered", }, }, "required": ["project_id", "edit_id"], }, ), types.Tool( name="create-video-bar-chart-from-two-axis-data", description="Create a video bar chart from two-axis data", inputSchema={ "type": "object", "properties": { "x_values": {"type": "array", "items": {"type": "string"}}, "y_values": {"type": "array", "items": {"type": "number"}}, "x_label": {"type": "string"}, "y_label": {"type": "string"}, "title": {"type": "string"}, "filename": {"type": "string"}, }, "required": ["x_values", "y_values", "x_label", "y_label", "title"], }, ), types.Tool( name="create-video-line-chart-from-two-axis-data", description="Create a video line chart from two-axis data", inputSchema={ "type": "object", "properties": { "x_values": {"type": "array", "items": {"type": "string"}}, "y_values": {"type": "array", "items": {"type": "number"}}, "x_label": {"type": "string"}, "y_label": {"type": "string"}, "title": {"type": "string"}, "filename": {"type": "string"}, }, "required": ["x_values", "y_values", "x_label", "y_label", "title"], }, ), types.Tool( name="get-project-assets", description="Get all assets and details for a specific project, with pagination support for large projects", inputSchema={ "type": "object", "properties": { "project_id": { "type": "string", "description": "UUID of the project to retrieve assets for", }, "asset_types": { "type": "array", "items": {"type": "string"}, "description": "List of asset types to filter by (e.g. 'user', 'video', 'image', 'audio', 'generated_video', 'video_edit'). Video assets in a project are labeled 'user' for user uploaded, so prefer 'user' when building a video edit from project assets.", "default": ["user", "video", "image", "audio"], }, "page": { "type": "integer", "default": 1, "minimum": 1, "description": "Page number to retrieve when paginating through assets", }, "items_per_page": { "type": "integer", "default": 10, "minimum": 1, "maximum": 50, "description": "Number of items to show per page when paginating", }, "asset_cache_id": { "type": "string", "description": "ID of a previous asset cache to continue pagination. If provided, returns the next chunk of results", }, }, "required": ["project_id"], }, ), ] return [ types.Tool( name="create-videojungle-project", description="Create a new Video Jungle project to create video edits, add videos, assets, and more.", inputSchema={ "type": "object", "properties": { "name": {"type": "string", "description": "Name of the project"}, "description": { "type": "string", "description": "Description of the project", }, }, }, ), types.Tool( name="edit-locally", description="Create an OpenTimelineIO file for local editing with the user's desktop video editing suite.", inputSchema={ "type": "object", "properties": { "edit_id": { "type": "string", "description": "UUID of the edit to download", }, "project_id": { "type": "string", "description": "UUID of the project the video edit lives within", }, }, "required": ["edit_id", "project_id"], }, ), types.Tool( name="add-video", description="Upload video from URL. Begins analysis of video to allow for later information retrieval for automatic video editing an search.", inputSchema={ "type": "object", "properties": { "name": {"type": "string"}, "url": {"type": "string"}, }, "required": ["name", "url"], }, ), types.Tool( name="search-remote-videos", description="Default method to search videos. Will return videos including video_ids, which allow for information retrieval and building video edits. For large result sets, you can paginate through chunks using search_id and page parameters.", inputSchema={ "type": "object", "properties": { "query": {"type": "string", "description": "Text search query"}, "limit": { "type": "integer", "default": 50, "minimum": 1, "maximum": 100, "description": "Maximum number of results to return per page", }, "project_id": { "type": "string", "format": "uuid", "description": "Project ID to scope the search", }, "duration_min": { "type": "number", "minimum": 0, "description": "Minimum video duration in seconds", }, "duration_max": { "type": "number", "minimum": 0, "description": "Maximum video duration in seconds", }, "search_id": { "type": "string", "description": "ID of a previous search to continue pagination. If provided, returns the next chunk of results", }, "page": { "type": "integer", "default": 1, "minimum": 1, "description": "Page number to retrieve when paginating through results", }, "items_per_page": { "type": "integer", "default": 20, "minimum": 1, "maximum": 50, "description": "Number of items to show per page when paginating", }, "created_after": { "type": "string", "format": "date-time", "description": "Filter videos created after this datetime", }, "created_before": { "type": "string", "format": "date-time", "description": "Filter videos created before this datetime", }, "tags": { "type": "array", "items": {"type": "string"}, "description": "Set of tags to filter by", }, "include_segments": { "type": "boolean", "default": True, "description": "Whether to include video segments in results", }, "include_related": { "type": "boolean", "default": False, "description": "Whether to include related videos", }, "query_audio": { "type": "string", "description": "Audio search query", }, "query_img": { "type": "string", "description": "Image search query", }, }, }, ), types.Tool( name="generate-edit-from-videos", description="Generate an edit from videos, from within a specific project. Creates a new project to work within no existing project ID (UUID) is passed ", inputSchema={ "type": "object", "properties": { "project_id": { "type": "string", "description": "Either an existing Project UUID or String. A UUID puts the edit in an existing project, and a string creates a new project with that name.", }, "name": {"type": "string", "description": "Video Edit name"}, "open_editor": { "type": "boolean", "description": "Open a live editor with the project's edit", }, "resolution": { "type": "string", "description": "Video resolution. Examples include '1920x1080', '1280x720'", }, "edit": { "type": "array", "items": { "type": "object", "properties": { "video_id": { "type": "string", "description": "Video UUID", }, "video_start_time": { "type": "string", "description": "Clip start time in 00:00:00.000 format", }, "video_end_time": { "type": "string", "description": "Clip end time in 00:00:00.000 format", }, "type": { "type": "string", "description": "Type of asset ('videofile' for video files, or 'user' for project specific assets)", }, "audio_levels": { "type": "array", "description": "Optional audio level adjustments for this clip", "items": { "type": "object", "properties": { "audio_level": { "type": "string", "description": "Audio level (0.0 to 1.0)", } }, }, }, }, }, "description": "Array of video clips to include in the edit", }, "audio_asset": { "type": "object", "properties": { "audio_id": { "type": "string", "description": "Audio asset UUID", }, "type": { "type": "string", "description": "Audio file type (e.g., 'mp3', 'wav')", }, "filename": { "type": "string", "description": "Audio file name", }, "audio_start_time": { "type": "string", "description": "Audio start time in 00:00:00.000 format", }, "audio_end_time": { "type": "string", "description": "Audio end time in 00:00:00.000 format", }, "url": { "type": "string", "description": "Optional URL for the audio file", }, "audio_levels": { "type": "array", "description": "Optional audio level adjustments", "items": {"type": "object"}, }, }, "description": "Optional audio overlay for the video edit", }, }, "required": ["edit", "name", "project_id"], }, ), types.Tool( name="generate-edit-from-single-video", description="Generate a compressed video edit from a single video.", inputSchema={ "type": "object", "properties": { "project_id": {"type": "string"}, "resolution": {"type": "string"}, "video_id": {"type": "string"}, "edit": { "type": "array", "items": { "type": "object", "properties": { "video_start_time": { "type": "string", "description": "Clip start time in 00:00:00.000 format", }, "video_end_time": { "type": "string", "description": "Clip end time in 00:00:00.000 format", }, }, }, "description": "Array of time segments to extract from the video", }, }, "required": ["edit", "project_id", "video_id"], }, ), types.Tool( name="update-video-edit", description="Update an existing video edit within a specific project.", inputSchema={ "type": "object", "properties": { "project_id": { "type": "string", "description": "UUID of the project containing the edit", }, "edit_id": { "type": "string", "description": "UUID of the video edit to update", }, "name": {"type": "string", "description": "Video Edit name"}, "description": { "type": "string", "description": "Description of the video edit", }, "video_output_format": { "type": "string", "description": "Output format for the video (e.g., 'mp4', 'webm')", }, "video_output_resolution": { "type": "string", "description": "Video resolution. Examples include '1920x1080', '1280x720'", }, "video_output_fps": { "type": "number", "description": "Frames per second for the output video", }, "video_series_sequential": { "type": "array", "description": "Array of video clips in sequential order", "items": { "type": "object", "properties": { "video_id": { "type": "string", "description": "Video UUID", }, "video_start_time": { "type": "string", "description": "Clip start time in 00:00:00.000 format", }, "video_end_time": { "type": "string", "description": "Clip end time in 00:00:00.000 format", }, "type": { "type": "string", "description": "Type of asset ('videofile' for video files, or 'user' for project specific assets)", }, "audio_levels": { "type": "array", "description": "Optional audio level adjustments for this clip", "items": { "type": "object", "properties": { "audio_level": { "type": "string", "description": "Audio level (0.0 to 1.0)", } }, }, }, }, }, }, "audio_overlay": { "type": "object", "description": "Audio overlay settings and assets", }, "rendered": { "type": "boolean", "description": "Whether the edit has been rendered", }, }, "required": ["project_id", "edit_id"], }, ), types.Tool( name="create-video-bar-chart-from-two-axis-data", description="Create a video bar chart from two-axis data", inputSchema={ "type": "object", "properties": { "x_values": {"type": "array", "items": {"type": "string"}}, "y_values": {"type": "array", "items": {"type": "number"}}, "x_label": {"type": "string"}, "y_label": {"type": "string"}, "title": {"type": "string"}, "filename": {"type": "string"}, }, "required": ["x_values", "y_values", "x_label", "y_label", "title"], }, ), types.Tool( name="create-video-line-chart-from-two-axis-data", description="Create a video line chart from two-axis data", inputSchema={ "type": "object", "properties": { "x_values": {"type": "array", "items": {"type": "string"}}, "y_values": {"type": "array", "items": {"type": "number"}}, "x_label": {"type": "string"}, "y_label": {"type": "string"}, "title": {"type": "string"}, "filename": {"type": "string"}, }, "required": ["x_values", "y_values", "x_label", "y_label", "title"], }, ), types.Tool( name="get-project-assets", description="Get all assets and details for a specific project, with pagination support for large projects", inputSchema={ "type": "object", "properties": { "project_id": { "type": "string", "description": "UUID of the project to retrieve assets for", }, "asset_types": { "type": "array", "items": {"type": "string"}, "description": "List of asset types to filter by (e.g. 'user', 'video', 'image', 'audio', 'generated_video', 'generated_audio', 'video_edit')", "default": [ "user", "video", "image", "audio", "generated_audio", ], }, "page": { "type": "integer", "default": 1, "minimum": 1, "description": "Page number to retrieve when paginating through assets", }, "items_per_page": { "type": "integer", "default": 50, "minimum": 1, "maximum": 100, "description": "Number of items to show per page when paginating", }, "asset_cache_id": { "type": "string", "description": "ID of a previous asset cache to continue pagination. If provided, returns the next chunk of results", }, }, "required": ["project_id"], }, ), ] def format_single_video(video): """ Format a single video metadata tuple (metadata_dict, confidence_score) Returns a formatted string and a Python code string representation """ try: # Create human-readable format readable_format = f""" Video Embedding Result: ------------- Video ID: {video['video_id']} Description: {video['description']} Timestamp: {video['timepoint']} Detected Items: {', '.join(video['detected_items']) if video['detected_items'] else 'None'} """ except Exception as e: raise ValueError(f"Error formatting video: {str(e)}") return readable_format def filter_unique_videos_keep_first(json_results): seen = set() return [ item for item in json_results if item["video_id"] not in seen and not seen.add(item["video_id"]) ] def format_video_info(video): try: if video.get("script") is not None: if len(video.get("script")) > 200: script = video.get("script")[:200] + "..." else: script = video.get("script") else: script = "N/A" segments = [] for segment in video.get("matching_segments", []): segments.append( f"- Time: {segment.get('start_seconds', 'N/A')} to {segment.get('end_seconds', 'N/A')}" ) joined_segments = "\n".join(segments) return ( f"- Video Id: {video.get('video_id', 'N/A')}\n" f" Video name: {video.get('video', {}).get('name', 'N/A')}\n" f" URL to view video: {video.get('video', {}).get('url', 'N/A')}\n" f" Video manuscript: {script}" f" Matching scenes: {joined_segments}" f" Generated description: {video.get('video', 'N/A').get('generated_description', 'N/A')}" ) except Exception as e: return f"Error formatting video: {str(e)}" def format_video_info_long(video): try: if video.get("script") is not None: if len(video.get("script")) > 200: script = video.get("script")[:200] + "..." else: script = video.get("script") else: script = "N/A" return ( f"- Video Id: {video.get('video_id', 'N/A')}\n" f" Video name: {video.get('video', {}).get('name', 'N/A')}\n" f" URL to view video: {video.get('video', {}).get('url', 'N/A')}\n" f" Generated description: {video.get('video', 'N/A').get('generated_description', 'N/A')}" f" Video manuscript: {script}" f" Matching times: {video.get('scene_changes', 'N/A')}" ) except Exception as e: return f"Error formatting video: {str(e)}" def format_asset_info(asset): """Format asset information for display based on the example structure you showed""" try: # Support both type and asset_type fields asset_type = asset.get("type", asset.get("asset_type", "unknown")) asset_id = asset.get("id", "N/A") # Support both name and keyname fields asset_name = asset.get("name", asset.get("keyname", "N/A")) # Common fields first formatted = [f"- Asset ID: {asset_id}"] formatted.append(f" Type: {asset_type}") formatted.append(f" Name: {asset_name}") # Get URL (try different possible fields) url = asset.get("url", "N/A") download_url = asset.get("download_url", "N/A") if url and url != "N/A": # Truncate very long URLs if len(url) > 80: formatted.append(f" URL: {url[:77]}...") else: formatted.append(f" URL: {url}") if download_url and download_url != "N/A" and download_url != url: if len(download_url) > 80: formatted.append(f" Download URL: {download_url[:77]}...") else: formatted.append(f" Download URL: {download_url}") # Description description = asset.get("description", "N/A") if description and description != "N/A": if len(description) > 120: formatted.append(f" Description: {description[:117]}...") else: formatted.append(f" Description: {description}") # Creation time created_at = asset.get("created_at", "N/A") if created_at and created_at != "N/A": formatted.append(f" Created: {created_at}") # Handle video assets and user-uploaded content if asset_type in ["user", "video"]: # Look for generated description (from your example) gen_desc = asset.get("generated_description", "N/A") if gen_desc and gen_desc != "N/A": formatted.append(f" Generated description: {gen_desc}") # Check for create_parameters.analysis (from your example) create_params = asset.get("create_parameters", {}) if create_params and isinstance(create_params, dict): analysis = create_params.get("analysis", {}) if analysis and isinstance(analysis, dict): formatted.append(f" analysis: {str(analysis)}") # Status field (if available) status = asset.get("status", "N/A") if status and status != "N/A": formatted.append(f" Status: {status}") # Asset path field (if available) asset_path = asset.get("asset_path", "N/A") if asset_path and asset_path != "N/A": formatted.append(f" Asset path: {asset_path}") # Handle video_edit assets elif asset_type == "video_edit": description = asset.get("description", "N/A") if description and description != "N/A": formatted.append(f" Description: {description}") # Add edit-specific details resolution = asset.get("video_output_resolution", "N/A") fps = asset.get("video_output_fps", "N/A") format = asset.get("video_output_format", "N/A") if resolution != "N/A": formatted.append(f" Resolution: {resolution}") if fps != "N/A": formatted.append(f" FPS: {fps}") if format != "N/A": formatted.append(f" Format: {format}") # Show clips in the edit clips = asset.get("video_series_sequential", []) if clips and len(clips) > 0: formatted.append(f" Clips: {len(clips)} total") # Show first 3 clips as examples for i, clip in enumerate(clips[:3]): clip_id = clip.get("video_id", "N/A") start = clip.get("video_start_time", "N/A") end = clip.get("video_end_time", "N/A") asset_type = clip.get("type", "N/A") formatted.append( f" Clip {i+1}: {clip_id} of type {asset_type} from {start} to {end}" ) if len(clips) > 3: formatted.append(f" ... and {len(clips)-3} more clips") # Add any other important fields we might have missed important_fields = ["filetype", "duration", "width", "height", "uploaded"] for field in important_fields: if field in asset and asset[field] is not None and asset[field] != "N/A": formatted.append(f" {field}: {asset[field]}") return "\n".join(formatted) except Exception as e: return f"Error formatting asset {asset.get('id', 'unknown')}: {str(e)}" @server.call_tool() async def handle_call_tool( name: str, arguments: dict | None ) -> list[types.TextContent | types.ImageContent | types.EmbeddedResource]: """ Handle tool execution requests. Tools can modify server state and notify clients of changes. """ if name not in tools: raise ValueError(f"Unknown tool: {name}") if not arguments: raise ValueError("Missing arguments") # Store some tool results in server state for pagination global _search_result_cache if name == "create-videojungle-project" and arguments: namez = arguments.get("name") description = arguments.get("description") if not namez or not description: raise ValueError("Missing project name") # Create a new project project = vj.projects.create(name=namez, description=description) # Notify clients that resources have changed await server.request_context.session.send_resource_list_changed() return [ types.TextContent( type="text", text=f"Created new project '{project.name}' with id '{project.id}'", ) ] if name == "edit-locally" and arguments: project_id = arguments.get("project_id") edit_id = arguments.get("edit_id") if not project_id or not edit_id: raise ValueError("Missing edit and / or project id") env_vars = {"VJ_API_KEY": VJ_API_KEY, "PATH": os.environ["PATH"]} edit_data = vj.projects.get_edit(project_id, edit_id) formatted_name = edit_data["name"].replace(" ", "-") with open(f"{formatted_name}.json", "w") as f: json.dump(edit_data, f, indent=4) logging.info(f"edit data is: {edit_data}") logging.info(f"current directory is: {os.getcwd()}") subprocess.Popen( [ "uv", "run", "python", "./src/video_editor_mcp/generate_opentimeline.py", "--file", f"{formatted_name}.json", "--output", f"{formatted_name}.otio", ], env=env_vars, ) return [ types.TextContent( type="text", text=f"Edit {edit_data['name']} is being downloaded and converted to OpenTimelineIO format. You can find it in the current directory.", ) ] if name == "add-video" and arguments: name = arguments.get("name") # type: ignore url = arguments.get("url") if not name or not url: raise ValueError("Missing name or content") # Update server state vj.video_files.create(name=name, filename=str(url), upload_method="url") # Notify clients that resources have changed await server.request_context.session.send_resource_list_changed() return [ types.TextContent( type="text", text=f"Added video '{name}' with url: {url}", ) ] if name == "search-remote-videos" and arguments: # Check if this is a pagination request search_id = arguments.get("search_id") page = arguments.get("page", 1) items_per_page = arguments.get("items_per_page", 5) # Run cache cleanup cleanup_cache() # If we have a search_id, we're doing pagination if search_id and search_id in _search_result_cache: cache_entry = _search_result_cache[search_id] cached_results = cache_entry["results"] total_items = len(cached_results) total_pages = (total_items + items_per_page - 1) // items_per_page # Update timestamp on access _search_result_cache[search_id]["timestamp"] = time.time() start_idx = (page - 1) * items_per_page end_idx = min(start_idx + items_per_page, total_items) # Get current page items current_page_items = cached_results[start_idx:end_idx] # Format the paginated results query_info = cache_entry.get("query", "unknown") response_text = [] response_text.append( f"Search Results for '{query_info}' (Page {page}/{total_pages}, showing items {start_idx+1}-{end_idx} of {total_items})" ) # Add embedding note if it exists in the cache embedding_note = cache_entry.get("embedding_note") if embedding_note: response_text.append(embedding_note) # Format each item based on whether it's a regular result or an embedding result if len(current_page_items) > 0: if ( isinstance(current_page_items[0], dict) and "video_id" in current_page_items[0] ): response_text.extend( format_video_info(video) for video in current_page_items ) else: response_text.extend(current_page_items) else: response_text.append("No items to display on this page.") # Add pagination info with navigation options pagination_info = [] if page > 1: pagination_info.append( f"Previous page: call search-remote-videos with search_id='{search_id}' and page={page-1}" ) has_more = page < total_pages if has_more: pagination_info.append( f"Next page: call search-remote-videos with search_id='{search_id}' and page={page+1}" ) if pagination_info: response_text.append("\nNavigation options:") response_text.extend(pagination_info) if not has_more: response_text.append("\nEnd of results.") return [ types.TextContent( type="text", text="\n".join(response_text), ) ] # This is a new search request query = arguments.get("query") limit = arguments.get("limit", 10) project_id = arguments.get("project_id") tags = arguments.get("tags", None) duration_min = arguments.get("duration_min", None) duration_max = arguments.get("duration_max", None) created_after = arguments.get("created_after", None) created_before = arguments.get("created_before", None) include_segments = arguments.get("include_segments", True) include_related = arguments.get("include_related", False) # Validate that at least one query type is provided if not query and not tags: raise ValueError("At least one query or tag must be provided") # Perform the main search with all parameters if tags: search_params = { "limit": limit, "include_segments": include_segments, "include_related": include_related, "tags": json.loads(tags), "duration_min": duration_min, "duration_max": duration_max, "created_after": created_after, "created_before": created_before, } else: search_params = { "limit": limit, "include_segments": include_segments, "include_related": include_related, "duration_min": duration_min, "duration_max": duration_max, "created_after": created_after, "created_before": created_before, } # Add optional parameters if query: search_params["query"] = query if project_id: search_params["project_id"] = project_id embedding_results = [] embedding_search_formatted = [] embedding_note = None # If we have a text query, try embedding search but fallback to regular search if model is still loading if query: try: embeddings = model_loader.encode_text(query) response = model_loader.post_embeddings( embeddings, "https://api.video-jungle.com/video-file/embedding-search", headers={ "Content-Type": "application/json", "X-API-KEY": VJ_API_KEY, }, ) logging.info(f"Response is: {response.json()}") if response.status_code != 200: raise RuntimeError(f"Error searching for videos: {response.text}") embedding_results = response.json() embedding_search_formatted = [ format_single_video(video) for video in embedding_results ] except Exception as e: if "still loading" in str(e): logging.warning( "Embedding model still loading, falling back to text-only search" ) embedding_results = [] embedding_search_formatted = [] # Add note that will be displayed to the user embedding_note = "Note: Embedding-based semantic search is still initializing. Only text-based search results are shown. Please try again later for more accurate semantic search results." else: # For other errors, log and continue with regular search logging.error(f"Error in embedding search: {e}") embedding_results = [] embedding_search_formatted = [] # Get regular search results videos = vj.video_files.search(**search_params) logging.info(f"num videos are: {len(videos)}") # If only a few results, return them directly without pagination if len(videos) <= 3 and len(videos) >= 1 and not embedding_results: return [ types.TextContent( type="text", text=format_video_info_long(video), ) for video in videos ] # For larger result sets, set up pagination formatted_videos = [format_video_info(video) for video in videos] # Store the results in the cache for pagination new_search_id = str(uuid.uuid4()) all_results = [] if query and embedding_results: # Store both types of results all_results = formatted_videos + embedding_search_formatted else: all_results = formatted_videos # Store results with timestamp and embedding note if present _search_result_cache[new_search_id] = { "results": all_results, "timestamp": time.time(), "query": query or "tag-search", "embedding_note": embedding_note, } # Calculate pagination info total_items = len(all_results) total_pages = (total_items + items_per_page - 1) // items_per_page # Format the first page results response_text = [] query_display = query or "tag search" response_text.append( f"Search Results for '{query_display}' (Page 1/{total_pages}, showing items 1-{min(items_per_page, total_items)} of {total_items})" ) # Add note about embedding search if it was skipped due to model loading if embedding_note: response_text.append(embedding_note) # Show first page items first_page_items = all_results[:items_per_page] if first_page_items: response_text.extend(first_page_items) else: response_text.append("No results found matching your query.") # Add pagination info has_more = total_pages > 1 if has_more: response_text.append("\nNavigation options:") response_text.append( f"Next page: call search-remote-videos with search_id='{new_search_id}' and page=2" ) response_text.append( "\nTip: You can control items per page with the items_per_page parameter (default: 5, max: 20)" ) else: response_text.append("\nEnd of results.") return [ types.TextContent( type="text", text="\n".join(response_text), ) ] if name == "search-local-videos" and arguments: if not os.environ.get("LOAD_PHOTOS_DB"): raise ValueError( "You must set the LOAD_PHOTOS_DB environment variable to True to use this tool" ) keyword = arguments.get("keyword") if not keyword: raise ValueError("Missing keyword") start_date = None end_date = None if arguments.get("start_date") and arguments.get("end_date"): start_date = arguments.get("start_date") end_date = arguments.get("end_date") try: db = photos_loader.db videos = get_videos_by_keyword(db, keyword, start_date, end_date) return [ types.TextContent( type="text", text=( f"Number of Videos Returned: {len(videos)}. Here are the first 100 results: \n{videos[:100]}" ), ) ] except Exception: raise RuntimeError("Local Photos database not yet initialized") if name == "generate-edit-from-videos" and arguments: edit = arguments.get("edit") project = arguments.get("project_id") name = arguments.get("name") # type: ignore open_editor = arguments.get("open_editor") resolution = arguments.get("resolution") audio_asset = arguments.get("audio_asset") subtitles = arguments.get("subtitles", True) created = False logging.info(f"edit is: {edit} and the type is: {type(edit)}") if open_editor is None: open_editor = True if not edit: raise ValueError("Missing edit") if not project: raise ValueError("Missing project") if not resolution: resolution = "1080x1920" if not name: raise ValueError("Missing name for edit") if resolution == "1080p": resolution = "1920x1080" elif resolution == "720p": resolution = "1280x720" try: w, h = resolution.split("x") _ = f"{int(w)}x{int(w)}" except Exception as e: raise ValueError( f"Resolution must be in the format 'widthxheight' where width and height are integers: {e}" ) updated_edit = [] for cut in edit: # Get the audio level for this clip (default to 0.5) audio_level_value = "0.5" if "audio_levels" in cut and len(cut["audio_levels"]) > 0: audio_level_value = cut["audio_levels"][0].get("audio_level", "0.5") updated_edit.append( { "video_id": cut["video_id"], "video_start_time": cut["video_start_time"], "video_end_time": cut["video_end_time"], "type": cut["type"], "audio_levels": [ { "audio_level": audio_level_value, "start_time": cut["video_start_time"], "end_time": cut["video_end_time"], } ], } ) logging.info(f"updated edit is: {updated_edit}") # Process audio asset if provided audio_overlay = [] if audio_asset: audio_overlay_item = { "audio_id": audio_asset.get("audio_id", ""), "type": audio_asset.get("type", "mp3"), "filename": audio_asset.get("filename", ""), "audio_start_time": audio_asset.get("audio_start_time", "00:00:00.000"), "audio_end_time": audio_asset.get("audio_end_time", "00:00:00.000"), "url": audio_asset.get("url", ""), "audio_levels": audio_asset.get("audio_levels", []), } audio_overlay.append(audio_overlay_item) logging.info(f"Audio overlay configured: {audio_overlay_item}") else: subtitles = False json_edit = { "video_edit_version": "1.0", "video_output_format": "mp4", "video_output_resolution": resolution, "video_output_fps": 60.0, "name": name, "video_output_filename": "output_video.mp4", "audio_overlay": audio_overlay, "video_series_sequential": updated_edit, "skip_rendering": True, "subtitle_from_audio_overlay": subtitles, } try: proj = vj.projects.get(project) except Exception as e: logging.info(f"project not found, creating new project because {e}") proj = vj.projects.create( name=project, description="Claude generated project" ) project = proj.id created = True logging.info(f"video edit is: {json_edit}") edit = vj.projects.render_edit(project, json_edit) webbrowser.open( f"https://app.video-jungle.com/projects/{proj.id}/edits/{edit['edit_id']}" ) global BROWSER_OPEN BROWSER_OPEN = True # the following generates an edit for opentimeline, allowing you to open it in # a desktop video editor like final cut pro, etc. """ try: original_dir = os.getcwd() os.chdir("./tools") logging.info(f"in directory: {os.getcwd()}") # don't block, because this might take a while env_vars = {"VJ_API_KEY": VJ_API_KEY, "PATH": os.environ["PATH"]} logging.info( f"launching viewer with: {edit['asset_id']} {project}.mp4 {proj.name}" ) subprocess.Popen( [ "uv", "run", "viewer", edit["asset_id"], f"video-edit-{project}.mp4", proj.name, ], env=env_vars, ) os.chdir(original_dir) except Exception as e: logging.info(f"Error running viewer: {e}") """ if created: # we created a new project so let the user / LLM know return [ types.TextContent( type="text", text=f"Created new project {proj.name} with id '{proj.id}' and created edit {edit} with raw edit info: {updated_edit}", ) ] return [ types.TextContent( type="text", text=f"Generated edit in existing project {proj.name} with id '{proj.id}' with generated asset info: {edit} and raw edit info: {updated_edit}", ) ] if name == "generate-edit-from-single-video" and arguments: edit = arguments.get("edit") project = arguments.get("project_id") video_id = arguments.get("video_id") resolution = arguments.get("resolution") created = False logging.info(f"edit is: {edit} and the type is: {type(edit)}") if not edit: raise ValueError("Missing edit") if not project: raise ValueError("Missing project") if not video_id: raise ValueError("Missing video_id") if not resolution: resolution = "1080x1920" try: w, h = resolution.split("x") _ = f"{int(w)}x{int(w)}" except Exception as e: raise ValueError( f"Resolution must be in the format 'widthxheight' where width and height are integers: {e}" ) try: updated_edit = [ { "video_id": video_id, "video_start_time": cut["video_start_time"], "video_end_time": cut["video_end_time"], "type": "video-file", "audio_levels": [], } for cut in edit ] except Exception as e: raise ValueError(f"Error updating edit: {e}") logging.info(f"updated edit is: {updated_edit}") json_edit = { "video_edit_version": "1.0", "video_output_format": "mp4", "video_output_resolution": resolution, "video_output_fps": 60.0, "video_output_filename": "output_video.mp4", "audio_overlay": [], # TODO: add this back in "video_series_sequential": updated_edit, } try: proj = vj.projects.get(project) except Exception: proj = vj.projects.create( name=project, description="Claude generated project" ) project = proj.id created = True logging.info(f"video edit is: {json_edit}") try: edit = vj.projects.render_edit(project, json_edit) except Exception as e: logging.error(f"Error rendering edit: {e}") logging.info(f"edit is: {edit}") try: os.chdir("./tools") logging.info(f"in directory: {os.getcwd()}") # don't block, because this might take a while env_vars = {"VJ_API_KEY": VJ_API_KEY, "PATH": os.environ["PATH"]} logging.info( f"launching viewer with: {edit['asset_id']} {project}.mp4 {proj.name}" ) subprocess.Popen( [ "uv", "run", "viewer", edit["asset_id"], f"video-edit-{project}.mp4", proj.name, ], env=env_vars, ) except Exception as e: logging.info(f"Error running viewer: {e}") if created: # we created a new project so let the user / LLM know logging.info(f"created new project {proj.name} and created edit {edit}") return [ types.TextContent( type="text", text=f"Created new project {proj.name} with project id '{proj.id}' and raw edit info: {edit}", ) ] return [ types.TextContent( type="text", text=f"Generated edit with id '{edit.id}' in project {proj.name} with project id '{proj.id}' and raw edit info: {edit}", ) ] if name == "update-video-edit" and arguments: project_id = arguments.get("project_id") edit_id = arguments.get("edit_id") edit_name = arguments.get("name") description = arguments.get("description") video_output_format = arguments.get("video_output_format") video_output_resolution = arguments.get("video_output_resolution") video_output_fps = arguments.get("video_output_fps") video_series_sequential = arguments.get("video_series_sequential") audio_overlay = arguments.get("audio_overlay") rendered = arguments.get("rendered") # Validate required parameters if not project_id: raise ValueError("Missing project_id") if not edit_id: raise ValueError("Missing edit_id") # Process resolution format like in create function if video_output_resolution: if video_output_resolution == "1080p": video_output_resolution = "1920x1080" elif video_output_resolution == "720p": video_output_resolution = "1280x720" # Validate resolution format try: w, h = video_output_resolution.split("x") _ = f"{int(w)}x{int(h)}" except Exception as e: raise ValueError( f"Resolution must be in the format 'widthxheight' where width and height are integers: {e}" ) # Try to get the existing project try: proj = vj.projects.get(project_id) except Exception as e: raise ValueError(f"Project with ID {project_id} not found: {e}") # Try to get the existing edit try: existing_edit = vj.projects.get_edit(project_id, edit_id) except Exception as e: raise ValueError( f"Edit with ID {edit_id} not found in project {project_id}: {e}" ) # Process video clips if provided updated_video_series = None if video_series_sequential: updated_video_series = [] for clip in video_series_sequential: # Get the audio level for this clip (default to 0.5) audio_level_value = "0.5" if "audio_levels" in clip and len(clip["audio_levels"]) > 0: audio_level_value = clip["audio_levels"][0].get( "audio_level", "0.5" ) updated_video_series.append( { "video_id": clip["video_id"], "video_start_time": clip["video_start_time"], "video_end_time": clip["video_end_time"], "type": clip["type"], "audio_levels": [ { "audio_level": audio_level_value, "start_time": clip["video_start_time"], "end_time": clip["video_end_time"], } ], } ) # Create an empty dictionary without type annotations update_json = dict() # Add fields one by one with explicit type handling update_json["video_edit_version"] = "1.0" if edit_name: update_json["name"] = edit_name if description: update_json["description"] = description if video_output_format: update_json["video_output_format"] = video_output_format if video_output_resolution: update_json["video_output_resolution"] = video_output_resolution if video_output_fps is not None: update_json["video_output_fps"] = float(video_output_fps) if updated_video_series is not None: # Cast to a list to ensure proper typing update_json["video_series_sequential"] = list(updated_video_series) if audio_overlay is not None: # Cast to a list to ensure proper typing update_json["audio_overlay"] = list(audio_overlay) if audio_overlay else [] # Skip rendering by default like in create function update_json["skip_rendering"] = bool(True) # If rendering is explicitly requested if rendered is True: update_json["skip_rendering"] = bool(False) logging.info(f"Updating edit {edit_id} with: {update_json}") # Call the API to update the edit updated_edit = vj.projects.update_edit(project_id, edit_id, update_json) # Optionally open the browser to the updated edit if not BROWSER_OPEN: webbrowser.open( f"https://app.video-jungle.com/projects/{project_id}/edits/{edit_id}" ) return [ types.TextContent( type="text", text=f"Updated edit {edit_id} in project {proj.name} with changes: {update_json}", ) ] if name == "get-project-assets" and arguments: # Extract arguments project_id = arguments.get("project_id") page = arguments.get("page", 1) items_per_page = arguments.get("items_per_page", 10) asset_cache_id = arguments.get("asset_cache_id") asset_types = arguments.get("asset_types", ["user", "video", "image", "audio"]) # Validate required arguments if not project_id: raise ValueError("Missing project_id parameter") # Run cache cleanup cleanup_cache() # Check if this is a pagination request using an existing cache if asset_cache_id and asset_cache_id in _project_assets_cache: cache_entry = _project_assets_cache[asset_cache_id] cached_assets = cache_entry["assets"] project_info = cache_entry.get("project_info", {}) # Update timestamp on access _project_assets_cache[asset_cache_id]["timestamp"] = time.time() # Calculate pagination total_items = len(cached_assets) total_pages = (total_items + items_per_page - 1) // items_per_page # Calculate current page items start_idx = (page - 1) * items_per_page end_idx = min(start_idx + items_per_page, total_items) current_page_items = cached_assets[start_idx:end_idx] # Format the response response_text = [] # Add project info header project_name = project_info.get("name", "Project") project_description = project_info.get("description", "") response_text.append(f"Project: {project_name}") if project_description: response_text.append(f"Description: {project_description}") response_text.append( f"\nAssets (Page {page}/{total_pages}, showing items {start_idx+1}-{end_idx} of {total_items}):" ) # Format each asset if current_page_items: formatted_assets = [ format_asset_info(asset) for asset in current_page_items ] response_text.extend(formatted_assets) else: response_text.append("No assets to display on this page.") # Add pagination info navigation_options = [] if page > 1: navigation_options.append( f"Previous page: call get-project-assets with asset_cache_id='{asset_cache_id}' and page={page-1}" ) has_more = page < total_pages if has_more: navigation_options.append( f"Next page: call get-project-assets with asset_cache_id='{asset_cache_id}' and page={page+1}" ) if navigation_options: response_text.append("\nNavigation options:") response_text.extend(navigation_options) if not has_more: response_text.append("\nEnd of results.") return [types.TextContent(type="text", text="\n".join(response_text))] # This is a new request - get the project and its assets try: # Fetch project data project = vj.projects.get(project_id) logging.info(f"Retrieved project: {project.name} (ID: {project_id})") # Get project data as a dictionary so we can extract assets project_data = project.model_dump() logging.info(f"Project data: {project_data}") # Direct assignment - based on the data structure you showed all_assets = project_data.get("assets", []) logging.info(f"Found {len(all_assets)} assets in project") # Filter assets by asset_type if specified project_assets = [] for asset in all_assets: if not asset_types or asset.get("asset_type") in asset_types: project_assets.append(asset) logging.info( f"After filtering by types {asset_types}: {len(project_assets)} assets remaining" ) # If no assets found, provide a helpful message if not project_assets: return [ types.TextContent( type="text", text=f"Project {project.name} (ID: {project_id}) contains no assets of types: {', '.join(asset_types)}.", ) ] # Store results in cache for pagination new_cache_id = str(uuid.uuid4()) _project_assets_cache[new_cache_id] = { "assets": project_assets, "project_info": { "id": project_id, "name": project.name, "description": project.description, }, "timestamp": time.time(), } # Calculate pagination total_items = len(project_assets) total_pages = (total_items + items_per_page - 1) // items_per_page # Get first page first_page_items = project_assets[:items_per_page] # Format the response response_text = [] # Add project info header response_text.append(f"Project: {project.name}") if project.description: response_text.append(f"Description: {project.description}") response_text.append( f"\nAssets (Page 1/{total_pages}, showing items 1-{min(items_per_page, total_items)} of {total_items}):" ) # Format assets if first_page_items: formatted_assets = [ format_asset_info(asset) for asset in first_page_items ] response_text.extend(formatted_assets) else: response_text.append("No assets to display.") # Add pagination info has_more = total_pages > 1 if has_more: response_text.append("\nNavigation options:") response_text.append( f"Next page: call get-project-assets with asset_cache_id='{new_cache_id}' and page=2" ) response_text.append( "\nTip: You can control items per page with the items_per_page parameter (default: 10, max: 50)" ) else: response_text.append("\nEnd of results.") return [types.TextContent(type="text", text="\n".join(response_text))] except Exception as e: logging.error(f"Error fetching project assets: {e}") raise ValueError(f"Error retrieving project assets: {str(e)}") if ( (name == "create-video-bar-chart-from-two-axis-data") or (name == "create-video-line-chart-from-two-axis-data") and arguments ): x_values = arguments.get("x_values") y_values = arguments.get("y_values") x_label = arguments.get("x_label") y_label = arguments.get("y_label") title = arguments.get("title") filename = arguments.get("filename") if not x_values or not y_values or not x_label or not y_label or not title: raise ValueError("Missing required arguments") if not filename: if name == "create-video-bar-chart-from-two-axis-data": filename = "bar_chart.mp4" elif name == "create-video-line-chart-from-two-axis-data": filename = "line_chart.mp4" else: raise ValueError("Invalid tool name") y_axis_safe = validate_y_values(y_values) if not y_axis_safe: raise ValueError("Y values are not valid") # Render the bar chart data = { "x_values": x_values, "y_values": y_values, "x_label": x_label, "y_label": y_label, "title": title, "filename": filename, } with open("chart_data.json", "w") as f: json.dump(data, f, indent=4) file_path = os.path.join(os.getcwd(), "media/videos/720p30/", filename) if name == "create-video-bar-chart-from-two-axis-data": subprocess.Popen( [ "uv", "run", "src/video_editor_mcp/generate_charts.py", "chart_data.json", "bar", ] ) return [ types.TextContent( type="text", text=f"Bar chart video generated.\nSaved to {file_path}", ) ] elif name == "create-video-line-chart-from-two-axis-data": subprocess.Popen( [ "uv", "run", "src/video_editor_mcp/generate_charts.py", "chart_data.json", "line", ] ) return [ types.TextContent( type="text", text=f"Line chart video generated.\nSaved to {file_path}", ) ] async def main(): # Run the server using stdin/stdout streams async with mcp.server.stdio.stdio_server() as (read_stream, write_stream): await server.run( read_stream, write_stream, InitializationOptions( server_name="video-jungle-mcp", server_version="0.1.0", capabilities=server.get_capabilities( notification_options=NotificationOptions(), experimental_capabilities={}, ), ), )

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/burningion/video-editing-mcp'

If you have feedback or need assistance with the MCP directory API, please join our Discord server