Skip to main content
Glama

AI Agent Template MCP Server

by bswa006
cli.ts5.21 kB
#!/usr/bin/env node /** * MCP Context Manager CLI */ import { Command } from 'commander'; import * as fs from 'fs/promises'; import * as path from 'path'; import chalk from 'chalk'; import ora from 'ora'; const program = new Command(); program .name('mcp-context') .description('MCP Context Manager - Helps AI agents understand your codebase') .version('1.0.0'); program .command('init') .description('Initialize MCP context management in your project') .action(async () => { const spinner = ora('Initializing MCP Context Manager...').start(); try { // Create .mcp directory const mcpDir = path.join(process.cwd(), '.mcp'); await fs.mkdir(mcpDir, { recursive: true }); // Create instructions file const instructions = `# MCP Context Manager Instructions ## What is this? MCP Context Manager helps AI assistants understand your codebase by providing them with structured templates and ensuring they use project-specific context. ## How it works: 1. MCP provides a PROJECT-TEMPLATE.md template 2. You ask your AI assistant to analyze your codebase and fill the template 3. MCP monitors that the AI uses this filled template when generating code ## Getting Started: ### Step 1: Start the MCP server \`\`\`bash npx mcp-context serve \`\`\` ### Step 2: In your AI tool (Claude, Cursor, etc.), run: \`\`\` Please use the MCP Context Manager to: 1. Create the agent-context directory 2. Read the template from 'template://project-template' 3. Analyze this codebase 4. Create agent-context/PROJECT-TEMPLATE.md with all placeholders filled 5. Create agent-context/CODEBASE-CONTEXT.md with our patterns 6. Create agent-context/.context7.yaml for hallucination prevention 7. Create directory READMEs in both their folders and agent-context/ \`\`\` ### Step 3: Verify files were created: - agent-context/PROJECT-TEMPLATE.md - agent-context/CODEBASE-CONTEXT.md - agent-context/.context7.yaml - agent-context/adr/ (for architecture decisions) - agent-context/directories/ (copies of directory READMEs) - src/components/README.md (and copy in agent-context) - etc. ### Step 4: Always remind AI to use context: Before generating code, tell your AI: "Please read agent-context/PROJECT-TEMPLATE.md and agent-context/CODEBASE-CONTEXT.md before generating code" ## MCP Tools Available: - create_project_template - Tells AI to create PROJECT-TEMPLATE.md - create_codebase_context - Tells AI to create CODEBASE-CONTEXT.md - create_directory_readme - Tells AI to create directory README - check_context_usage - Verifies AI is using context files `; await fs.writeFile(path.join(mcpDir, 'INSTRUCTIONS.md'), instructions); // Create MCP config for Claude Desktop const mcpConfig = { mcpServers: { "mcp-context-manager": { command: "npx", args: ["mcp-context-manager", "serve"], env: {} } } }; await fs.writeFile( path.join(mcpDir, 'claude_desktop_config.json'), JSON.stringify(mcpConfig, null, 2) ); spinner.succeed('MCP Context Manager initialized!'); console.log(` ${chalk.bold.green('✅ Setup Complete!')} ${chalk.bold('Next steps:')} 1. ${chalk.cyan('For Claude Desktop:')} - Copy the config from ${chalk.yellow('.mcp/claude_desktop_config.json')} - Add it to your Claude Desktop MCP settings 2. ${chalk.cyan('For other AI tools:')} - Run: ${chalk.yellow('npx mcp-context-manager serve')} - Configure your AI tool to use the MCP server 3. ${chalk.cyan('In your AI assistant, say:')} ${chalk.gray('"Please use MCP Context Manager to analyze this codebase and create context files"')} ${chalk.bold('📖 Full instructions:')} ${chalk.yellow('.mcp/INSTRUCTIONS.md')} `); } catch (error) { spinner.fail('Failed to initialize'); console.error(error); process.exit(1); } }); program .command('serve') .description('Start the MCP context server') .action(async () => { console.log(chalk.bold.cyan('🚀 Starting MCP Context Manager Server...')); console.log(chalk.gray('The server will provide context templates to your AI assistant.')); console.log(); // Import and run the server const { MCPContextServer } = await import('./server/index.js'); const server = new MCPContextServer(); await server.run(); }); program .command('check') .description('Check if context files exist') .action(async () => { console.log(chalk.bold('Checking context files...')); const files = [ 'PROJECT-TEMPLATE.md', 'CODEBASE-CONTEXT.md', 'src/components/README.md', 'src/services/README.md', ]; for (const file of files) { try { await fs.access(path.join(process.cwd(), file)); console.log(chalk.green('✓'), file); } catch { console.log(chalk.red('✗'), file, chalk.gray('(not found)')); } } console.log(` ${chalk.bold('Tips:')} - Missing files? Ask your AI to create them using MCP tools - Make sure to tell AI to read these files before generating code `); }); program.parse(process.argv);

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/bswa006/mcp-context-manager'

If you have feedback or need assistance with the MCP directory API, please join our Discord server