#!/usr/bin/env python3
"""
Database Query Fix - Handle "city" suffix in place names
The database stores "Seattle city" but users search for "Seattle"
"""
def show_database_fix():
"""Show the specific database query fix needed"""
print("🔧 DATABASE QUERY FIX NEEDED")
print("="*40)
print("\n🔍 PROBLEM IDENTIFIED:")
print("Database stores: 'Seattle city'")
print("User searches: 'Seattle, WA'")
print("Query fails: name_lower = 'seattle' (doesn't match 'seattle city')")
print("\n📁 FILE TO FIX:")
print("src/data_retrieval/geographic_handler.py")
print("Method: CompleteGeographicHandler._place_state_lookup()")
print("\n🔍 FIND (around line 300):")
print("""
cursor.execute('''
SELECT place_fips, state_fips, state_abbrev, name,
population, lat, lon
FROM places
WHERE name_lower = ? AND state_abbrev = ?
ORDER BY CAST(COALESCE(population, 0) AS INTEGER) DESC
LIMIT 1
''', (place_name.lower(), state_abbrev))
""")
print("\n✏️ REPLACE WITH:")
print("""
# Try exact match first
cursor.execute('''
SELECT place_fips, state_fips, state_abbrev, name,
population, lat, lon
FROM places
WHERE name_lower = ? AND state_abbrev = ?
ORDER BY CAST(COALESCE(population, 0) AS INTEGER) DESC
LIMIT 1
''', (place_name.lower(), state_abbrev))
row = cursor.fetchone()
if not row:
# Try with city suffix
cursor.execute('''
SELECT place_fips, state_fips, state_abbrev, name,
population, lat, lon
FROM places
WHERE name_lower = ? AND state_abbrev = ?
ORDER BY CAST(COALESCE(population, 0) AS INTEGER) DESC
LIMIT 1
''', (f"{place_name.lower()} city", state_abbrev))
row = cursor.fetchone()
""")
print("\n🧪 TEST AFTER FIX:")
print("Seattle, WA should resolve to:")
print(" FIPS: 53063000")
print(" Name: Seattle city")
print(" Method: database_with_city_suffix")
print("\n⚡ HOWEVER - LLM-FIRST APPROACH IS BETTER:")
print("Instead of fixing database queries, implement LLM-first resolution")
print("LLM knows Seattle = 53:63000 without database lookup")
def show_implementation_priority():
"""Show which approach to implement first"""
print("\n🎯 IMPLEMENTATION PRIORITY")
print("="*30)
print("\n🥇 OPTION 1 (RECOMMENDED): LLM-First Approach")
print(" - Fixes Seattle, Portland, and all major cities instantly")
print(" - No database dependency for common locations")
print(" - Aligns with your architectural vision")
print(" - Enables advanced analytics with batch operations")
print(" - Time: 15 minutes to implement")
print("\n🥈 OPTION 2 (BANDAID): Database Query Fix")
print(" - Only fixes the 'city' suffix issue")
print(" - Still database-dependent")
print(" - Doesn't address architectural problems")
print(" - Won't support advanced use cases well")
print(" - Time: 10 minutes to implement")
print("\n💡 RECOMMENDATION:")
print("Implement LLM-first approach instead of database fix")
print("It solves the root cause, not just the symptom")
def main():
show_database_fix()
show_implementation_priority()
print("\n🚀 NEXT STEPS:")
print("1. Test fixed LLM approach: python test_llm_first.py")
print("2. Implement LLM-first in census_mcp_server")
print("3. Test end-to-end: python quick_test_pnw.py")
print("4. Move to batch operations for advanced analytics")
if __name__ == "__main__":
main()