# Task-Graph Workflow System: Technical Architecture Documentation
**Document Version**: 1.0
**Created**: 2025-08-09
**Target Audience**: Software Architects, Developers, Integration Engineers, Technical Leads
**Classification**: Technical Architecture Specification
---
## Table of Contents
1. [Executive Summary](#executive-summary)
2. [System Architecture Overview](#system-architecture-overview)
3. [Detailed Component Specifications](#detailed-component-specifications)
4. [API Specifications](#api-specifications)
5. [Implementation Guidelines](#implementation-guidelines)
6. [Performance & Scalability](#performance--scalability)
7. [Deployment & Operations](#deployment--operations)
8. [Security & Compliance](#security--compliance)
9. [Future Architecture Evolution](#future-architecture-evolution)
---
## Executive Summary
The Task-Graph Workflow System is an advanced multi-agent orchestration framework designed to coordinate 8 specialist agents and 2 meta-agents for complex AI-assisted workflows. Built on the proven AutoDocs MCP Server foundation, this system provides intelligent task decomposition, dynamic agent coordination, and hierarchical context management for enterprise-scale AI automation.
### Key Architectural Principles
- **Intelligent Orchestration**: Task Graph Constructor analyzes requests and creates optimized execution workflows
- **Dynamic Coordination**: Orchestration Manager handles parallel execution, conflict resolution, and quality assurance
- **Hierarchical Context**: Multi-level context architecture (Global → Task-Specific → Agent-Local)
- **Proven Foundation**: Built on production-tested AutoDocs MCP Server with 8 core tools and robust infrastructure
### Strategic Value Proposition
- **10x Productivity**: Complex workflows requiring 8+ agent interactions handled seamlessly
- **Enterprise Reliability**: Production-grade error handling, monitoring, and scalability
- **Extensible Architecture**: Plugin-based design for custom agents and workflow patterns
- **Zero Vendor Lock-in**: Open MCP protocol with standardized interfaces
---
## System Architecture Overview
### High-Level Architecture Diagram
```
┌─────────────────────────────────────────────────────────────────────┐
│ TASK-GRAPH WORKFLOW SYSTEM │
├─────────────────────────────────────────────────────────────────────┤
│ CLIENT INTERFACE │
│ ┌───────────────┐ ┌─────────────────┐ ┌─────────────────────────┐ │
│ │ Claude Code │ │ Cursor IDE │ │ Enterprise Systems │ │
│ │ Integration │ │ Integration │ │ (REST APIs) │ │
│ └───────────────┘ └─────────────────┘ └─────────────────────────┘ │
├─────────────────────────────────────────────────────────────────────┤
│ META-COGNITIVE LAYER │
│ ┌───────────────────────────────────┐ ┌─────────────────────────┐ │
│ │ TASK GRAPH CONSTRUCTOR │ │ ORCHESTRATION MANAGER │ │
│ │ │ │ │ │
│ │ • Request Analysis │ │ • Workflow Execution │ │
│ │ • Task Decomposition │ │ • Agent Coordination │ │
│ │ • Dependency Mapping │ │ • Conflict Resolution │ │
│ │ • Agent Assignment │ │ • Quality Gates │ │
│ │ • Context Generation │ │ • Performance Tracking │ │
│ └───────────────────────────────────┘ └─────────────────────────┘ │
├─────────────────────────────────────────────────────────────────────┤
│ CONTEXT MANAGEMENT │
│ ┌─────────────────┐ ┌──────────────┐ ┌──────────────────────────┐ │
│ │ Global Context │ │ Task Context │ │ Agent-Local Context │ │
│ │ │ │ │ │ │ │
│ │ • System State │ │ • Task Spec │ │ • Domain Expertise │ │
│ │ • User Session │ │ • Progress │ │ • Working Memory │ │
│ │ • Preferences │ │ • Resources │ │ • Tools & State │ │
│ └─────────────────┘ └──────────────┘ └──────────────────────────┘ │
├─────────────────────────────────────────────────────────────────────┤
│ SPECIALIST LAYER │
│ ┌─────────────┐ ┌─────────────┐ ┌─────────────┐ ┌─────────────────┐ │
│ │ CORE │ │ MCP │ │ DOCS │ │ TESTING │ │
│ │ SERVICES │ │ PROTOCOL │ │ INTEGRATION │ │ SPECIALIST │ │
│ │ AGENT │ │ AGENT │ │ AGENT │ │ AGENT │ │
│ └─────────────┘ └─────────────┘ └─────────────┘ └─────────────────┘ │
│ ┌─────────────┐ ┌─────────────┐ ┌─────────────┐ ┌─────────────────┐ │
│ │ PRODUCT │ │ PRODUCTION │ │ TECHNICAL │ │ AGENT DESIGN │ │
│ │ MANAGER │ │ OPS │ │ WRITER │ │ ARCHITECT │ │
│ │ AGENT │ │ AGENT │ │ AGENT │ │ AGENT │ │
│ └─────────────┘ └─────────────┘ └─────────────┘ └─────────────────┘ │
├─────────────────────────────────────────────────────────────────────┤
│ INFRASTRUCTURE LAYER │
│ ┌───────────────────────────────────────────────────────────────┐ │
│ │ AUTODOCS MCP SERVER FOUNDATION │ │
│ │ │ │
│ │ • 8 Production MCP Tools • Health & Monitoring │ │
│ │ • FastMCP Protocol Handler • Version-Based Caching │ │
│ │ • Async Service Layer • Network Resilience │ │
│ │ • Graceful Shutdown • Error Handling & Recovery │ │
│ │ • Configuration Management • Performance Metrics │ │
│ │ │ │
│ └───────────────────────────────────────────────────────────────┘ │
└─────────────────────────────────────────────────────────────────────┘
```
### Component Relationships
#### Meta-Cognitive Layer
- **Task Graph Constructor**: Analyzes complex requests, decomposes into task graphs, assigns agents
- **Orchestration Manager**: Executes workflows, coordinates agent interactions, ensures quality
#### Information Flow
1. **Request Intake**: Complex requests from clients (Claude Code, IDEs, APIs)
2. **Analysis Phase**: Task Graph Constructor analyzes and decomposes requests
3. **Orchestration Phase**: Orchestration Manager coordinates agent execution
4. **Context Flow**: Hierarchical context propagates through all layers
5. **Result Synthesis**: Orchestration Manager combines agent outputs into cohesive results
#### Control Flow
1. **Sequential Execution**: Linear workflows with clear handoffs
2. **Parallel Execution**: Independent tasks executed simultaneously
3. **Conditional Branching**: Dynamic workflows based on intermediate results
4. **Error Recovery**: Automatic retry, fallback, and graceful degradation
### Integration Points
#### External System Interfaces
- **MCP Protocol**: Standard Model Context Protocol for AI client integration
- **REST APIs**: Enterprise system integration and webhook endpoints
- **WebSocket**: Real-time workflow status and live collaboration
- **File System**: Local project analysis and output generation
---
## Detailed Component Specifications
### Task Graph Constructor Technical Spec
#### Core Responsibilities
- **Request Analysis**: Parse complex multi-faceted requests into structured requirements
- **Task Decomposition**: Break complex workflows into atomic, executable tasks
- **Agent Assignment**: Match tasks to optimal agents based on capability scoring
- **Dependency Management**: Identify and sequence task dependencies
- **Context Generation**: Create task-specific context packages for agents
#### Input/Output Interfaces
**Input Schema:**
```json
{
"request_id": "string (UUID)",
"request_type": "enum [feature_development, documentation_update, system_analysis, release_management, bug_investigation]",
"complexity_level": "integer (1-10)",
"priority": "enum [low, medium, high, urgent]",
"context": {
"user_session": "object",
"project_state": "object",
"previous_interactions": "array"
},
"requirements": {
"functional": "array",
"non_functional": "array",
"constraints": "array"
},
"preferences": {
"execution_strategy": "enum [fast, thorough, balanced]",
"quality_gates": "array",
"notification_settings": "object"
}
}
```
**Output Schema (Task Graph):**
```json
{
"graph_id": "string (UUID)",
"request_id": "string (UUID)",
"created_at": "timestamp",
"estimated_duration": "integer (minutes)",
"tasks": [
{
"task_id": "string (UUID)",
"task_type": "string",
"assigned_agent": "string",
"priority": "integer (1-10)",
"dependencies": ["string (task_ids)"],
"inputs": {
"required_context": "array",
"input_parameters": "object",
"resource_requirements": "object"
},
"outputs": {
"expected_artifacts": "array",
"success_criteria": "array",
"quality_metrics": "object"
},
"validation_criteria": {
"acceptance_tests": "array",
"performance_thresholds": "object",
"quality_gates": "array"
},
"parallel_safe": "boolean",
"timeout": "integer (seconds)",
"retry_policy": {
"max_attempts": "integer",
"backoff_strategy": "string",
"failure_escalation": "array"
}
}
],
"execution_strategy": {
"type": "enum [sequential, parallel, mixed]",
"parallelization_groups": "array",
"critical_path": "array (task_ids)",
"optimization_hints": "object"
},
"quality_gates": [
{
"gate_id": "string",
"trigger_condition": "string",
"validation_tasks": "array",
"failure_actions": "array"
}
],
"success_criteria": {
"completion_percentage": "integer",
"quality_threshold": "number",
"performance_targets": "object"
}
}
```
#### Core Algorithms
**Task Decomposition Algorithm:**
```python
async def decompose_request(request: ComplexRequest) -> TaskGraph:
"""
Advanced task decomposition using domain expertise and dependency analysis.
Algorithm:
1. Classify request type using ML pattern recognition
2. Apply domain-specific decomposition templates
3. Identify cross-cutting concerns and shared dependencies
4. Optimize task granularity for parallel execution
5. Validate completeness and consistency
"""
# Phase 1: Request Classification
request_type = await classify_request_type(request.requirements)
complexity_score = calculate_complexity(request)
# Phase 2: Template-Based Decomposition
base_tasks = apply_decomposition_template(request_type, request.requirements)
# Phase 3: Dependency Analysis
dependency_graph = analyze_task_dependencies(base_tasks)
optimized_graph = optimize_for_parallelization(dependency_graph)
# Phase 4: Agent Assignment
agent_assignments = await assign_optimal_agents(optimized_graph.tasks)
# Phase 5: Context Generation
task_contexts = generate_task_contexts(optimized_graph, request.context)
return TaskGraph(
tasks=optimized_graph.tasks,
dependencies=optimized_graph.dependencies,
agent_assignments=agent_assignments,
contexts=task_contexts
)
```
**Agent Assignment Engine:**
```python
async def assign_optimal_agent(task: Task) -> AgentAssignment:
"""
Multi-criteria agent selection using capability scoring.
Scoring Factors:
- Domain expertise match (40%)
- Current workload capacity (25%)
- Historical performance on similar tasks (20%)
- Context compatibility (15%)
"""
candidates = get_available_agents(task.required_capabilities)
scored_candidates = []
for agent in candidates:
score = await calculate_agent_score(agent, task)
scored_candidates.append((agent, score))
# Select highest scoring agent with availability
optimal_agent = max(scored_candidates, key=lambda x: x[1])[0]
return AgentAssignment(
agent=optimal_agent,
confidence_score=score,
backup_agents=get_backup_candidates(scored_candidates)
)
```
### Orchestration Manager Technical Spec
#### Core Responsibilities
- **Workflow Execution**: Execute task graphs with optimal parallelization
- **State Management**: Track workflow state and task progress
- **Agent Coordination**: Manage agent communication and handoffs
- **Conflict Resolution**: Resolve conflicts between agent outputs
- **Quality Assurance**: Implement quality gates and validation checkpoints
- **Performance Monitoring**: Track execution metrics and optimization opportunities
#### State Management System
**Workflow State Schema:**
```json
{
"workflow_id": "string (UUID)",
"graph_id": "string (UUID)",
"current_state": "enum [pending, running, paused, completed, failed]",
"started_at": "timestamp",
"estimated_completion": "timestamp",
"progress": {
"completed_tasks": "integer",
"total_tasks": "integer",
"completion_percentage": "number",
"current_phase": "string"
},
"task_states": [
{
"task_id": "string",
"state": "enum [pending, assigned, running, validating, completed, failed]",
"assigned_agent": "string",
"started_at": "timestamp",
"completed_at": "timestamp",
"attempts": "integer",
"outputs": "object",
"validation_results": "object",
"performance_metrics": "object"
}
],
"active_agents": ["string"],
"resource_utilization": "object",
"quality_metrics": "object"
}
```
#### Execution Engine
**Parallel Task Scheduler:**
```python
class ParallelTaskScheduler:
"""
Advanced task scheduler with dependency management and resource optimization.
"""
def __init__(self, max_concurrent_tasks: int = 8):
self.max_concurrent = max_concurrent_tasks
self.active_tasks = {}
self.completed_tasks = set()
self.failed_tasks = set()
self.agent_pool = AgentPool()
async def execute_workflow(self, workflow: WorkflowState) -> WorkflowResult:
"""
Execute workflow with optimal parallelization and error recovery.
"""
while not self.is_workflow_complete(workflow):
# Get ready tasks (dependencies satisfied)
ready_tasks = self.get_ready_tasks(workflow)
# Schedule tasks respecting concurrency limits
await self.schedule_ready_tasks(ready_tasks)
# Wait for task completions and handle results
completed = await self.wait_for_task_completion()
# Process completed tasks and update workflow state
for task_result in completed:
await self.process_task_completion(task_result, workflow)
# Handle any failed tasks with recovery strategies
await self.handle_task_failures(workflow)
return self.generate_workflow_result(workflow)
async def schedule_ready_tasks(self, ready_tasks: List[Task]) -> None:
"""Schedule tasks with optimal agent assignment and resource management."""
available_slots = self.max_concurrent - len(self.active_tasks)
tasks_to_schedule = ready_tasks[:available_slots]
for task in tasks_to_schedule:
agent = await self.agent_pool.assign_optimal_agent(task)
# Create task execution context
execution_context = await self.create_execution_context(task)
# Start task execution
task_future = asyncio.create_task(
agent.execute_task(task, execution_context)
)
self.active_tasks[task.task_id] = {
'task': task,
'agent': agent,
'future': task_future,
'started_at': time.time()
}
```
#### Conflict Resolution Engine
**Multi-Agent Decision Synthesis:**
```python
class ConflictResolver:
"""
Advanced conflict resolution for multi-agent decisions.
"""
async def resolve_conflicts(
self,
task: Task,
agent_outputs: List[AgentOutput]
) -> ResolvedOutput:
"""
Resolve conflicts between multiple agent outputs using various strategies.
"""
if len(agent_outputs) == 1:
return agent_outputs[0] # No conflict
# Detect conflict types
conflicts = self.detect_conflicts(agent_outputs)
if not conflicts:
# Outputs are compatible - merge them
return await self.merge_compatible_outputs(agent_outputs)
# Apply resolution strategy based on conflict type
resolution_strategy = self.select_resolution_strategy(conflicts, task)
return await resolution_strategy.resolve(agent_outputs, task)
def detect_conflicts(self, outputs: List[AgentOutput]) -> List[Conflict]:
"""Detect and classify conflicts between agent outputs."""
conflicts = []
# Check for direct contradictions
contradictions = self.find_contradictions(outputs)
conflicts.extend(contradictions)
# Check for incompatible recommendations
incompatible = self.find_incompatible_recommendations(outputs)
conflicts.extend(incompatible)
# Check for quality disagreements
quality_conflicts = self.find_quality_disagreements(outputs)
conflicts.extend(quality_conflicts)
return conflicts
```
### Context Management Architecture
#### Hierarchical Context Model
**Context Layer Structure:**
```
Global Context (System-wide)
├── User Session Context
│ ├── Authentication & Permissions
│ ├── User Preferences & Settings
│ └── Session History & State
├── System State Context
│ ├── Available Agents & Capabilities
│ ├── Resource Utilization Metrics
│ └── Configuration & Environment
└── Project Context
├── Codebase Structure & Metadata
├── Dependencies & Versions
└── Development History & Patterns
Task-Specific Context (Per Task Graph)
├── Task Graph Definition
│ ├── Task Dependencies & Flow
│ ├── Success Criteria & Quality Gates
│ └── Resource Requirements
├── Execution State
│ ├── Progress & Milestones
│ ├── Intermediate Results
│ └── Performance Metrics
└── Shared Working Memory
├── Cross-Task Data Dependencies
├── Shared Resources & Locks
└── Communication History
Agent-Local Context (Per Agent Instance)
├── Domain Expertise
│ ├── Specialized Knowledge Base
│ ├── Best Practices & Patterns
│ └── Tool Configurations
├── Working Memory
│ ├── Current Task State
│ ├── Intermediate Calculations
│ └── Error Context & Recovery
└── Performance History
├── Task Execution Metrics
├── Success/Failure Patterns
└── Learning & Adaptation Data
```
#### Context Lifecycle Management
**Context Creation and Enrichment:**
```python
class HierarchicalContextManager:
"""
Manages multi-level context with efficient loading and synchronization.
"""
def __init__(self):
self.global_context = GlobalContext()
self.task_contexts = {} # task_id -> TaskContext
self.agent_contexts = {} # agent_id -> AgentContext
async def create_task_context(
self,
task_graph: TaskGraph,
request: ComplexRequest
) -> TaskContext:
"""Create rich task context from global context and request."""
task_context = TaskContext(
task_graph=task_graph,
request_context=request.context,
created_at=datetime.utcnow()
)
# Enrich with relevant global context
task_context.project_info = await self.extract_project_context(
request.context.get('project_path')
)
task_context.user_preferences = self.global_context.get_user_preferences(
request.context.get('user_id')
)
# Create shared working memory
task_context.shared_memory = SharedWorkingMemory(
capacity=self.calculate_memory_requirements(task_graph)
)
self.task_contexts[task_graph.graph_id] = task_context
return task_context
async def get_agent_context(
self,
agent_id: str,
task: Task,
task_context: TaskContext
) -> AgentContext:
"""Create agent-specific context with task and global context."""
if agent_id not in self.agent_contexts:
self.agent_contexts[agent_id] = AgentContext(agent_id=agent_id)
agent_context = self.agent_contexts[agent_id]
# Load relevant portions of higher-level contexts
agent_context.load_global_context(
self.global_context,
relevance_filter=task.required_capabilities
)
agent_context.load_task_context(
task_context,
task_specific_filter=task.task_id
)
# Add task-specific working memory
agent_context.working_memory.load_task_state(task)
return agent_context
```
#### Context Access Control
**Access Pattern Implementation:**
```python
class ContextAccessManager:
"""
Manages secure and efficient context access across agents.
"""
def __init__(self):
self.access_policies = self.load_access_policies()
self.context_cache = LRUCache(maxsize=1000)
async def get_context_for_agent(
self,
agent_id: str,
task_id: str,
context_requirements: List[str]
) -> FilteredContext:
"""Get filtered context appropriate for agent and task."""
# Check access permissions
permitted_contexts = self.check_access_permissions(
agent_id, context_requirements
)
# Load only permitted context elements
context = FilteredContext()
for context_type in permitted_contexts:
context_data = await self.load_context_data(
context_type, task_id, agent_id
)
context.add_context(context_type, context_data)
# Cache for efficiency
cache_key = f"{agent_id}:{task_id}:{hash(tuple(permitted_contexts))}"
self.context_cache[cache_key] = context
return context
```
---
## API Specifications
### MCP Tool Extensions
#### Task Graph MCP Tools
**1. submit_complex_request**
```python
@mcp.tool
async def submit_complex_request(
request_type: str,
requirements: dict,
complexity_level: int = 5,
execution_strategy: str = "balanced",
context: dict = None
) -> dict:
"""
Submit a complex multi-agent request for task graph processing.
Args:
request_type: Type of request (feature_development, system_analysis, etc.)
requirements: Structured requirements with functional/non-functional specs
complexity_level: Estimated complexity from 1-10
execution_strategy: "fast", "thorough", or "balanced"
context: Additional context (project_path, user_preferences, etc.)
Returns:
Task graph with execution plan and workflow ID
"""
```
**2. get_workflow_status**
```python
@mcp.tool
async def get_workflow_status(workflow_id: str) -> dict:
"""
Get real-time status of a running workflow.
Args:
workflow_id: Unique workflow identifier
Returns:
Current workflow state with progress, active tasks, and metrics
"""
```
**3. agent_collaboration_request**
```python
@mcp.tool
async def agent_collaboration_request(
requesting_agent: str,
target_agents: List[str],
collaboration_type: str,
context: dict,
urgency: str = "normal"
) -> dict:
"""
Enable direct agent-to-agent collaboration requests.
Args:
requesting_agent: ID of agent requesting collaboration
target_agents: List of target agent IDs
collaboration_type: "consultation", "review", "handoff", "merge"
context: Collaboration context and requirements
urgency: Priority level for collaboration request
Returns:
Collaboration session details and communication channels
"""
```
### Agent Communication Protocols
#### Task Initiation Protocol
**Agent Task Assignment Message:**
```json
{
"message_type": "task_assignment",
"message_id": "string (UUID)",
"timestamp": "ISO 8601",
"workflow_id": "string (UUID)",
"task_id": "string (UUID)",
"assigned_agent": "string",
"task_details": {
"task_type": "string",
"priority": "integer (1-10)",
"estimated_duration": "integer (minutes)",
"timeout": "integer (seconds)",
"retry_policy": "object"
},
"context": {
"global_context": "object",
"task_context": "object",
"agent_context": "object"
},
"inputs": {
"parameters": "object",
"dependencies": "array (task_results)",
"resources": "object"
},
"success_criteria": {
"acceptance_tests": "array",
"quality_metrics": "object",
"output_requirements": "object"
},
"communication_channels": {
"status_updates": "string (endpoint)",
"collaboration_requests": "string (endpoint)",
"error_reporting": "string (endpoint)"
}
}
```
#### Progress Reporting Protocol
**Agent Progress Update Message:**
```json
{
"message_type": "progress_update",
"message_id": "string (UUID)",
"timestamp": "ISO 8601",
"workflow_id": "string (UUID)",
"task_id": "string (UUID)",
"agent_id": "string",
"status": "enum [started, in_progress, blocked, completed, failed]",
"progress": {
"completion_percentage": "number (0-100)",
"current_phase": "string",
"completed_milestones": "array",
"next_milestone": "string"
},
"intermediate_results": "object (optional)",
"performance_metrics": {
"execution_time": "number (seconds)",
"resource_usage": "object",
"quality_indicators": "object"
},
"issues": [
{
"issue_type": "enum [warning, error, blocker]",
"description": "string",
"suggested_resolution": "string",
"escalation_required": "boolean"
}
],
"collaboration_requests": "array (optional)"
}
```
### External Integration APIs
#### Workflow Submission API
**REST Endpoint: POST /api/v1/workflows**
```json
{
"request": {
"type": "string",
"requirements": "object",
"complexity": "integer",
"strategy": "string"
},
"context": "object",
"preferences": "object",
"callback_url": "string (optional)",
"webhook_events": "array (optional)"
}
Response:
{
"workflow_id": "string (UUID)",
"estimated_duration": "integer (minutes)",
"task_count": "integer",
"assigned_agents": "array",
"status_endpoint": "string (URL)",
"websocket_endpoint": "string (URL)"
}
```
#### Status Monitoring API
**WebSocket: /ws/workflows/{workflow_id}**
```json
{
"event_type": "enum [status_change, task_completed, agent_communication, error, completion]",
"timestamp": "ISO 8601",
"workflow_id": "string",
"data": {
"current_status": "string",
"progress": "object",
"active_agents": "array",
"recent_updates": "array"
}
}
```
---
## Implementation Guidelines
### Development Environment Setup
#### Dependencies and Requirements
**Core Dependencies:**
```toml
# pyproject.toml additions for Task Graph System
[tool.task-graph-system]
name = "autodocs-task-graph"
version = "1.0.0"
[tool.task-graph-system.dependencies]
# Meta-cognitive layer
pydantic = "^2.5.0" # Data models and validation
fastapi = "^0.104.0" # REST API endpoints
websockets = "^12.0" # Real-time communication
networkx = "^3.2" # Graph algorithms and analysis
redis = "^5.0.0" # Distributed state management
# AI and ML capabilities
sentence-transformers = "^2.2.0" # Semantic similarity
scikit-learn = "^1.3.0" # ML algorithms for agent selection
transformers = "^4.35.0" # Text processing and analysis
# Workflow orchestration
celery = "^5.3.0" # Distributed task execution
kombu = "^5.3.0" # Message passing
croniter = "^2.0.0" # Scheduling and timing
# Enhanced monitoring
prometheus-client = "^0.19.0" # Metrics collection
opentelemetry-api = "^1.21.0" # Distributed tracing
structlog = "^23.2.0" # Structured logging (already present)
# Development and testing
pytest-asyncio = "^0.21.0" # Already present
pytest-mock = "^3.12.0" # Already present
factory-boy = "^3.3.0" # Test data generation
```
**Configuration Management:**
```python
# src/autodocs_mcp/task_graph/config.py
from typing import Dict, List, Optional
from pydantic import BaseModel, Field
from pathlib import Path
class TaskGraphConfig(BaseModel):
"""Configuration for Task Graph Workflow System."""
# Orchestration settings
max_concurrent_workflows: int = Field(default=10, ge=1, le=100)
max_concurrent_tasks_per_workflow: int = Field(default=8, ge=1, le=20)
task_timeout_default: int = Field(default=1800, ge=60, le=7200) # 30 minutes
workflow_timeout_default: int = Field(default=14400, ge=300, le=86400) # 4 hours
# Agent pool configuration
agent_pool_size: int = Field(default=16, ge=8, le=50)
agent_idle_timeout: int = Field(default=300, ge=60, le=3600) # 5 minutes
agent_health_check_interval: int = Field(default=30, ge=10, le=300)
# Context management
context_cache_size: int = Field(default=1000, ge=100, le=10000)
context_ttl: int = Field(default=3600, ge=300, le=86400) # 1 hour
max_context_memory_mb: int = Field(default=512, ge=64, le=2048)
# Quality and performance
quality_gate_timeout: int = Field(default=300, ge=30, le=1800) # 5 minutes
performance_monitoring_enabled: bool = Field(default=True)
distributed_tracing_enabled: bool = Field(default=False)
# State persistence
redis_url: Optional[str] = Field(default=None)
state_persistence_enabled: bool = Field(default=False)
state_backup_interval: int = Field(default=300, ge=60, le=3600)
# Integration endpoints
webhook_endpoints: Dict[str, str] = Field(default_factory=dict)
notification_channels: List[str] = Field(default_factory=list)
@property
def redis_enabled(self) -> bool:
return self.redis_url is not None and self.state_persistence_enabled
```
#### Testing Framework Configuration
**Test Infrastructure:**
```python
# tests/task_graph/conftest.py
import pytest
import asyncio
from unittest.mock import AsyncMock
from typing import Dict, Any
from autodocs_mcp.task_graph.orchestrator import OrchestrationManager
from autodocs_mcp.task_graph.constructor import TaskGraphConstructor
from autodocs_mcp.task_graph.context import HierarchicalContextManager
from autodocs_mcp.task_graph.agents import AgentPool
@pytest.fixture
async def mock_agent_pool():
"""Mock agent pool with all 8 specialist agents."""
pool = AsyncMock(spec=AgentPool)
# Mock agent assignments for each specialist
agents = {
'core-services': AsyncMock(),
'mcp-protocol': AsyncMock(),
'docs-integration': AsyncMock(),
'testing-specialist': AsyncMock(),
'product-manager': AsyncMock(),
'production-ops': AsyncMock(),
'technical-writer': AsyncMock(),
'agent-design-architect': AsyncMock()
}
for agent_id, agent_mock in agents.items():
agent_mock.agent_id = agent_id
agent_mock.execute_task = AsyncMock(return_value={'success': True})
agent_mock.get_capabilities = AsyncMock(return_value=['default'])
pool.get_agent.side_effect = lambda agent_id: agents.get(agent_id)
pool.assign_optimal_agent = AsyncMock(return_value=agents['core-services'])
return pool
@pytest.fixture
async def mock_context_manager():
"""Mock hierarchical context manager."""
manager = AsyncMock(spec=HierarchicalContextManager)
manager.create_task_context = AsyncMock(return_value={'task_context': 'mock'})
manager.get_agent_context = AsyncMock(return_value={'agent_context': 'mock'})
return manager
@pytest.fixture
async def task_graph_constructor(mock_agent_pool, mock_context_manager):
"""Task Graph Constructor with mocked dependencies."""
constructor = TaskGraphConstructor(
agent_pool=mock_agent_pool,
context_manager=mock_context_manager
)
return constructor
@pytest.fixture
async def orchestration_manager(mock_agent_pool, mock_context_manager):
"""Orchestration Manager with mocked dependencies."""
manager = OrchestrationManager(
agent_pool=mock_agent_pool,
context_manager=mock_context_manager
)
return manager
@pytest.fixture
def sample_complex_request():
"""Sample complex request for testing."""
return {
"request_id": "test-request-123",
"request_type": "feature_development",
"complexity_level": 7,
"requirements": {
"functional": [
"Add new MCP tool for semantic search",
"Implement caching for search results",
"Add configuration options"
],
"non_functional": [
"Response time < 500ms",
"95% cache hit rate",
"Comprehensive test coverage"
]
},
"context": {
"project_path": "/test/project",
"user_preferences": {"quality": "high"}
}
}
```
### Agent Integration Patterns
#### Making Existing Agents Task-Graph Compatible
**Agent Interface Adaptation:**
```python
# src/autodocs_mcp/task_graph/agents/base.py
from abc import ABC, abstractmethod
from typing import Any, Dict, List, Optional
from pydantic import BaseModel
class TaskContext(BaseModel):
"""Context information for task execution."""
task_id: str
task_type: str
global_context: Dict[str, Any]
task_context: Dict[str, Any]
agent_context: Dict[str, Any]
class TaskResult(BaseModel):
"""Standard task execution result."""
success: bool
outputs: Dict[str, Any]
performance_metrics: Dict[str, Any]
intermediate_artifacts: List[Any] = []
error_context: Optional[Dict[str, Any]] = None
class TaskGraphAgent(ABC):
"""Base class for task-graph compatible agents."""
def __init__(self, agent_id: str):
self.agent_id = agent_id
self.capabilities = self.get_capabilities()
self.current_tasks = {}
@abstractmethod
def get_capabilities(self) -> List[str]:
"""Return list of agent capabilities."""
pass
@abstractmethod
async def execute_task(
self,
task: Task,
context: TaskContext
) -> TaskResult:
"""Execute a task with given context."""
pass
async def validate_task_compatibility(self, task: Task) -> bool:
"""Check if agent can handle the given task."""
required_caps = task.required_capabilities
return all(cap in self.capabilities for cap in required_caps)
async def estimate_task_duration(self, task: Task) -> int:
"""Estimate task duration in seconds."""
# Default implementation - agents can override
complexity_multiplier = {
1: 60, # 1 minute for simple tasks
5: 300, # 5 minutes for medium tasks
10: 1800 # 30 minutes for complex tasks
}
return complexity_multiplier.get(task.complexity_level, 300)
```
**Core Services Agent Integration:**
```python
# src/autodocs_mcp/task_graph/agents/core_services_agent.py
from .base import TaskGraphAgent, TaskResult, TaskContext
from ..core.dependency_parser import PyProjectParser
from ..core.cache_manager import FileCacheManager
class CoreServicesTaskGraphAgent(TaskGraphAgent):
"""Core Services agent adapted for task graph execution."""
def __init__(self):
super().__init__(agent_id="core-services")
self.parser = None
self.cache_manager = None
def get_capabilities(self) -> List[str]:
"""Core services agent capabilities."""
return [
"dependency_parsing",
"cache_management",
"version_resolution",
"documentation_fetching",
"performance_optimization",
"concurrent_processing"
]
async def execute_task(
self,
task: Task,
context: TaskContext
) -> TaskResult:
"""Execute core services task."""
try:
# Initialize services if needed
await self._ensure_services_initialized()
# Route to appropriate handler based on task type
if task.task_type == "dependency_analysis":
result = await self._handle_dependency_analysis(task, context)
elif task.task_type == "cache_optimization":
result = await self._handle_cache_optimization(task, context)
elif task.task_type == "performance_analysis":
result = await self._handle_performance_analysis(task, context)
else:
raise ValueError(f"Unknown task type: {task.task_type}")
return TaskResult(
success=True,
outputs=result,
performance_metrics=self._collect_performance_metrics()
)
except Exception as e:
return TaskResult(
success=False,
outputs={},
performance_metrics=self._collect_performance_metrics(),
error_context={
"error_type": type(e).__name__,
"error_message": str(e),
"task_id": task.task_id
}
)
async def _handle_dependency_analysis(
self,
task: Task,
context: TaskContext
) -> Dict[str, Any]:
"""Handle dependency parsing and analysis tasks."""
project_path = task.inputs.get("project_path")
if not project_path:
raise ValueError("project_path required for dependency analysis")
# Parse project dependencies
parsing_result = await self.parser.parse_project(Path(project_path))
# Analyze dependency health and conflicts
analysis = await self._analyze_dependency_health(parsing_result)
return {
"parsing_result": parsing_result.model_dump(),
"health_analysis": analysis,
"recommendations": self._generate_dependency_recommendations(analysis)
}
```
#### Context Handling Patterns
**Context Consumption and Contribution:**
```python
class ContextAwareAgent(TaskGraphAgent):
"""Agent with advanced context handling capabilities."""
async def load_context(self, context: TaskContext) -> None:
"""Load and process relevant context for task execution."""
# Load global context relevant to agent domain
self.global_state = self._filter_global_context(
context.global_context,
self.capabilities
)
# Process task-specific context
self.task_state = context.task_context
# Initialize agent-local context
self.working_memory = context.agent_context.get("working_memory", {})
self.domain_knowledge = self._load_domain_knowledge()
async def contribute_context(self, result: TaskResult) -> Dict[str, Any]:
"""Contribute context for downstream tasks."""
context_contribution = {
"agent_id": self.agent_id,
"execution_timestamp": time.time(),
"outputs_summary": self._summarize_outputs(result.outputs),
"learned_patterns": self._extract_learned_patterns(),
"recommendations": self._generate_recommendations(),
"resource_usage": result.performance_metrics
}
return context_contribution
def _filter_global_context(
self,
global_context: Dict[str, Any],
capabilities: List[str]
) -> Dict[str, Any]:
"""Filter global context to relevant information."""
filtered_context = {}
# Include context relevant to agent capabilities
for capability in capabilities:
if capability in global_context:
filtered_context[capability] = global_context[capability]
# Always include system state and user preferences
filtered_context.update({
"system_state": global_context.get("system_state", {}),
"user_preferences": global_context.get("user_preferences", {}),
"project_metadata": global_context.get("project_metadata", {})
})
return filtered_context
```
### Quality Assurance Framework
#### Validation Strategies
**Multi-Level Validation System:**
```python
# src/autodocs_mcp/task_graph/validation.py
from enum import Enum
from typing import Dict, List, Any, Optional
from pydantic import BaseModel
class ValidationLevel(Enum):
INPUT = "input"
PROCESS = "process"
OUTPUT = "output"
INTEGRATION = "integration"
class ValidationResult(BaseModel):
success: bool
level: ValidationLevel
validator_id: str
checks_passed: int
checks_failed: int
issues: List[Dict[str, Any]]
recommendations: List[str]
class TaskValidator:
"""Comprehensive task validation system."""
def __init__(self):
self.validators = {
ValidationLevel.INPUT: [
self._validate_task_inputs,
self._validate_context_completeness,
self._validate_resource_availability
],
ValidationLevel.PROCESS: [
self._validate_execution_progress,
self._validate_agent_behavior,
self._validate_performance_metrics
],
ValidationLevel.OUTPUT: [
self._validate_output_quality,
self._validate_success_criteria,
self._validate_deliverable_completeness
],
ValidationLevel.INTEGRATION: [
self._validate_downstream_compatibility,
self._validate_context_contribution,
self._validate_workflow_continuity
]
}
async def validate_task(
self,
task: Task,
context: TaskContext,
result: Optional[TaskResult] = None,
level: ValidationLevel = ValidationLevel.INPUT
) -> ValidationResult:
"""Run comprehensive validation at specified level."""
validators = self.validators[level]
issues = []
checks_passed = 0
checks_failed = 0
for validator in validators:
try:
validator_result = await validator(task, context, result)
if validator_result["success"]:
checks_passed += 1
else:
checks_failed += 1
issues.extend(validator_result["issues"])
except Exception as e:
checks_failed += 1
issues.append({
"type": "validation_error",
"message": f"Validator {validator.__name__} failed: {str(e)}",
"severity": "error"
})
return ValidationResult(
success=checks_failed == 0,
level=level,
validator_id=f"task_validator_{level.value}",
checks_passed=checks_passed,
checks_failed=checks_failed,
issues=issues,
recommendations=self._generate_recommendations(issues)
)
```
#### Testing Approaches
**Integration Test Patterns:**
```python
# tests/task_graph/integration/test_workflow_execution.py
import pytest
import asyncio
from unittest.mock import AsyncMock
class TestWorkflowExecution:
"""Integration tests for complete workflow execution."""
@pytest.mark.asyncio
async def test_simple_sequential_workflow(
self,
task_graph_constructor,
orchestration_manager,
sample_complex_request
):
"""Test basic sequential workflow execution."""
# Phase 1: Task Graph Construction
task_graph = await task_graph_constructor.construct_graph(
sample_complex_request
)
assert task_graph.tasks is not None
assert len(task_graph.tasks) > 0
assert task_graph.execution_strategy is not None
# Phase 2: Workflow Execution
workflow_result = await orchestration_manager.execute_workflow(
task_graph
)
assert workflow_result.success is True
assert workflow_result.completion_percentage == 100
assert len(workflow_result.completed_tasks) == len(task_graph.tasks)
@pytest.mark.asyncio
async def test_parallel_workflow_execution(
self,
task_graph_constructor,
orchestration_manager
):
"""Test parallel task execution with dependency management."""
complex_request = {
"request_type": "system_analysis",
"requirements": {
"functional": [
"Analyze code quality",
"Check test coverage",
"Review documentation",
"Assess performance"
]
},
"execution_strategy": "parallel"
}
task_graph = await task_graph_constructor.construct_graph(complex_request)
# Verify parallel execution plan
assert task_graph.execution_strategy.type == "parallel"
# Execute workflow
start_time = asyncio.get_event_loop().time()
result = await orchestration_manager.execute_workflow(task_graph)
execution_time = asyncio.get_event_loop().time() - start_time
# Parallel execution should be faster than sequential
assert result.success is True
assert execution_time < (len(task_graph.tasks) * 30) # Less than 30s per task
@pytest.mark.asyncio
async def test_error_recovery_workflow(
self,
task_graph_constructor,
orchestration_manager,
mock_agent_pool
):
"""Test workflow resilience with task failures."""
# Configure one agent to fail
failing_agent = mock_agent_pool.get_agent('core-services')
failing_agent.execute_task = AsyncMock(
side_effect=Exception("Simulated task failure")
)
complex_request = {
"request_type": "feature_development",
"requirements": {"functional": ["Add new feature"]}
}
task_graph = await task_graph_constructor.construct_graph(complex_request)
result = await orchestration_manager.execute_workflow(task_graph)
# Should handle failure gracefully
assert "error_recovery" in result.metadata
assert result.partial_success is True
assert len(result.failed_tasks) > 0
```
---
## Performance & Scalability
### Performance Characteristics
#### Throughput Expectations
**Request Processing Capacity:**
- **Simple Requests** (1-3 tasks): 50-100 requests/minute
- **Medium Requests** (4-8 tasks): 20-30 requests/minute
- **Complex Requests** (8+ tasks): 5-10 requests/minute
- **Concurrent Workflows**: 10 active workflows maximum (configurable)
**Task Execution Performance:**
- **Task Startup Overhead**: < 200ms per task
- **Agent Assignment Latency**: < 50ms average
- **Context Loading Time**: < 100ms for standard contexts
- **Inter-Agent Communication**: < 10ms for local communication
#### Latency Profiles
**Workflow Completion Times (90th Percentile):**
```
Simple Documentation Update: 2-5 minutes
Feature Development Request: 15-45 minutes
System Analysis & Review: 30-90 minutes
Complex Multi-Phase Release: 2-6 hours
```
**Real-Time Operation Latencies:**
```
Workflow Status Query: < 50ms
Agent Status Update: < 20ms
Context Access: < 100ms
Quality Gate Validation: < 500ms
```
### Resource Utilization Patterns
#### Memory Usage
**Context Management:**
```python
class PerformanceMonitor:
"""Monitor system performance and resource utilization."""
def calculate_memory_requirements(self, workflow_count: int) -> Dict[str, int]:
"""Calculate memory requirements for active workflows."""
base_memory_mb = 64 # Base system overhead
# Memory per workflow component
memory_per_workflow = {
"task_graph": 2, # Task graph structure
"workflow_state": 4, # Execution state tracking
"global_context": 8, # Shared global context
"agent_contexts": 16, # Agent-specific contexts (8 agents * 2MB)
"working_memory": 32, # Task execution working memory
"communication": 4, # Inter-agent communication buffers
}
workflow_memory = sum(memory_per_workflow.values())
total_memory_mb = base_memory_mb + (workflow_count * workflow_memory)
return {
"base_memory_mb": base_memory_mb,
"memory_per_workflow_mb": workflow_memory,
"total_memory_mb": total_memory_mb,
"recommended_limit_mb": int(total_memory_mb * 1.5) # 50% buffer
}
```
#### CPU Usage Optimization
**Parallel Execution Strategies:**
```python
class OptimizedTaskScheduler:
"""CPU-optimized task scheduling with load balancing."""
def __init__(self, max_cpu_cores: int = 8):
self.max_cpu_cores = max_cpu_cores
self.cpu_usage_tracker = CPUUsageTracker()
async def optimize_task_distribution(
self,
ready_tasks: List[Task]
) -> List[List[Task]]:
"""Distribute tasks optimally across available CPU cores."""
# Classify tasks by CPU intensity
cpu_intensive = []
io_intensive = []
mixed_workload = []
for task in ready_tasks:
classification = await self._classify_task_workload(task)
if classification == "cpu_intensive":
cpu_intensive.append(task)
elif classification == "io_intensive":
io_intensive.append(task)
else:
mixed_workload.append(task)
# Create optimal distribution
task_groups = []
# CPU intensive tasks: limit to available cores
if cpu_intensive:
cores_for_cpu = min(len(cpu_intensive), self.max_cpu_cores)
task_groups.extend(self._distribute_evenly(cpu_intensive, cores_for_cpu))
# I/O intensive tasks: can over-subscribe cores
if io_intensive:
cores_for_io = self.max_cpu_cores * 2 # Over-subscribe for I/O
task_groups.extend(self._distribute_evenly(io_intensive, cores_for_io))
return task_groups
```
### Optimization Strategies
#### Context Optimization
**Efficient Context Management:**
```python
class ContextOptimizer:
"""Optimize context loading and caching for performance."""
def __init__(self):
self.context_cache = LRUCache(maxsize=1000)
self.preload_patterns = self._analyze_preload_patterns()
async def optimize_context_loading(
self,
workflow: WorkflowState
) -> ContextLoadingPlan:
"""Create optimal context loading plan for workflow."""
# Analyze context dependencies across tasks
context_graph = self._build_context_dependency_graph(workflow.tasks)
# Identify shared context that can be loaded once
shared_contexts = self._find_shared_contexts(context_graph)
# Plan preloading for predictable access patterns
preload_contexts = self._plan_context_preloading(workflow.tasks)
return ContextLoadingPlan(
shared_contexts=shared_contexts,
preload_contexts=preload_contexts,
estimated_memory_savings=self._calculate_memory_savings(
shared_contexts, preload_contexts
)
)
async def implement_context_pruning(
self,
agent_context: AgentContext,
task: Task
) -> PrunedContext:
"""Remove irrelevant context to optimize memory usage."""
# Analyze task requirements vs. available context
required_context = self._analyze_context_requirements(task)
available_context = agent_context.get_all_context()
# Keep only relevant context
pruned_context = {}
relevance_threshold = 0.7
for context_key, context_data in available_context.items():
relevance_score = self._calculate_relevance(
context_key, context_data, required_context
)
if relevance_score >= relevance_threshold:
pruned_context[context_key] = context_data
return PrunedContext(
context_data=pruned_context,
original_size_kb=self._calculate_size(available_context),
pruned_size_kb=self._calculate_size(pruned_context),
memory_savings_percentage=(
(1 - len(pruned_context) / len(available_context)) * 100
)
)
```
### Monitoring & Observability
#### Key Performance Metrics
**System Health Indicators:**
```python
class TaskGraphMetrics:
"""Comprehensive metrics collection for task graph system."""
def __init__(self):
self.metrics = {
# Throughput metrics
"workflows_per_minute": RateMetric(),
"tasks_per_minute": RateMetric(),
"successful_completions_per_minute": RateMetric(),
# Latency metrics
"workflow_completion_time": HistogramMetric(),
"task_execution_time": HistogramMetric(),
"agent_assignment_time": HistogramMetric(),
"context_loading_time": HistogramMetric(),
# Resource utilization
"memory_usage_mb": GaugeMetric(),
"cpu_utilization_percent": GaugeMetric(),
"active_agent_count": GaugeMetric(),
"context_cache_hit_rate": RatioMetric(),
# Quality metrics
"task_success_rate": RatioMetric(),
"quality_gate_pass_rate": RatioMetric(),
"error_rate_per_agent": CounterMetric(),
"retry_rate": RatioMetric(),
}
async def collect_workflow_metrics(
self,
workflow: WorkflowState
) -> Dict[str, Any]:
"""Collect comprehensive metrics for completed workflow."""
completion_time = workflow.completed_at - workflow.started_at
task_count = len(workflow.tasks)
successful_tasks = len([t for t in workflow.tasks if t.status == "completed"])
return {
"workflow_id": workflow.workflow_id,
"completion_time_seconds": completion_time.total_seconds(),
"task_count": task_count,
"successful_tasks": successful_tasks,
"success_rate": successful_tasks / task_count,
"average_task_time": completion_time.total_seconds() / task_count,
"agents_utilized": len(set(t.assigned_agent for t in workflow.tasks)),
"context_cache_hits": workflow.performance_metrics.get("cache_hits", 0),
"quality_gates_passed": workflow.quality_metrics.get("gates_passed", 0),
"resource_usage": {
"peak_memory_mb": workflow.performance_metrics.get("peak_memory", 0),
"cpu_time_seconds": workflow.performance_metrics.get("cpu_time", 0),
"network_requests": workflow.performance_metrics.get("network_requests", 0)
}
}
```
---
## Deployment & Operations
### Deployment Architecture
#### Infrastructure Requirements
**Compute Resources:**
```yaml
# kubernetes/task-graph-deployment.yaml
apiVersion: apps/v1
kind: Deployment
metadata:
name: autodocs-task-graph
labels:
app: autodocs-task-graph
spec:
replicas: 3
selector:
matchLabels:
app: autodocs-task-graph
template:
metadata:
labels:
app: autodocs-task-graph
spec:
containers:
- name: task-graph-system
image: autodocs/task-graph:latest
ports:
- containerPort: 8000
- containerPort: 8080 # WebSocket port
resources:
requests:
memory: "512Mi"
cpu: "500m"
limits:
memory: "2Gi"
cpu: "2000m"
env:
- name: TASK_GRAPH_MAX_CONCURRENT_WORKFLOWS
value: "10"
- name: TASK_GRAPH_REDIS_URL
valueFrom:
secretKeyRef:
name: redis-credentials
key: url
- name: TASK_GRAPH_LOG_LEVEL
value: "INFO"
livenessProbe:
httpGet:
path: /health
port: 8000
initialDelaySeconds: 30
periodSeconds: 10
readinessProbe:
httpGet:
path: /ready
port: 8000
initialDelaySeconds: 5
periodSeconds: 5
- name: redis
image: redis:7-alpine
ports:
- containerPort: 6379
resources:
requests:
memory: "128Mi"
cpu: "100m"
limits:
memory: "256Mi"
cpu: "200m"
```
**Service Dependencies:**
```yaml
# kubernetes/services.yaml
apiVersion: v1
kind: Service
metadata:
name: autodocs-task-graph
spec:
selector:
app: autodocs-task-graph
ports:
- name: http
port: 80
targetPort: 8000
- name: websocket
port: 8080
targetPort: 8080
type: LoadBalancer
---
apiVersion: v1
kind: Service
metadata:
name: redis-service
spec:
selector:
app: autodocs-task-graph
ports:
- port: 6379
targetPort: 6379
type: ClusterIP
```
#### Configuration Management
**Environment-Specific Settings:**
```python
# src/autodocs_mcp/task_graph/deployment/config.py
from enum import Enum
from typing import Dict, Any
import os
class DeploymentEnvironment(Enum):
DEVELOPMENT = "development"
STAGING = "staging"
PRODUCTION = "production"
class DeploymentConfig:
"""Environment-specific configuration for task graph system."""
def __init__(self, environment: DeploymentEnvironment):
self.environment = environment
self.config = self._load_environment_config()
def _load_environment_config(self) -> Dict[str, Any]:
"""Load configuration based on deployment environment."""
base_config = {
"max_concurrent_workflows": 10,
"max_concurrent_tasks": 8,
"task_timeout": 1800,
"enable_distributed_tracing": False,
"log_level": "INFO"
}
if self.environment == DeploymentEnvironment.DEVELOPMENT:
return {
**base_config,
"max_concurrent_workflows": 3,
"enable_debug_logging": True,
"log_level": "DEBUG",
"mock_external_services": True
}
elif self.environment == DeploymentEnvironment.STAGING:
return {
**base_config,
"max_concurrent_workflows": 5,
"enable_distributed_tracing": True,
"performance_monitoring": True,
"enable_chaos_testing": True
}
elif self.environment == DeploymentEnvironment.PRODUCTION:
return {
**base_config,
"max_concurrent_workflows": 20,
"enable_distributed_tracing": True,
"performance_monitoring": True,
"high_availability": True,
"backup_enabled": True,
"security_hardening": True
}
```
### Operational Procedures
#### Health Checks
**Comprehensive System Health Monitoring:**
```python
# src/autodocs_mcp/task_graph/health/health_checker.py
from typing import Dict, List, Any
from datetime import datetime, timedelta
import asyncio
class TaskGraphHealthChecker:
"""Advanced health checking for task graph system."""
async def get_system_health(self) -> Dict[str, Any]:
"""Get comprehensive system health status."""
health_checks = await asyncio.gather(
self._check_orchestrator_health(),
self._check_agent_pool_health(),
self._check_context_manager_health(),
self._check_redis_health(),
self._check_performance_health(),
return_exceptions=True
)
overall_health = all(
isinstance(check, dict) and check.get("status") == "healthy"
for check in health_checks
)
return {
"overall_status": "healthy" if overall_health else "degraded",
"timestamp": datetime.utcnow().isoformat(),
"components": {
"orchestrator": health_checks[0],
"agent_pool": health_checks[1],
"context_manager": health_checks[2],
"redis": health_checks[3],
"performance": health_checks[4]
},
"system_metrics": await self._collect_system_metrics()
}
async def _check_orchestrator_health(self) -> Dict[str, Any]:
"""Check orchestration manager health."""
try:
# Check if orchestrator can accept new workflows
can_accept_workflows = await self.orchestrator.can_accept_workflow()
# Check active workflow count
active_workflows = await self.orchestrator.get_active_workflow_count()
max_workflows = self.orchestrator.config.max_concurrent_workflows
# Check recent error rate
error_rate = await self._calculate_recent_error_rate("orchestrator")
status = "healthy"
if not can_accept_workflows or error_rate > 0.1:
status = "degraded"
if active_workflows >= max_workflows or error_rate > 0.3:
status = "unhealthy"
return {
"status": status,
"active_workflows": active_workflows,
"max_workflows": max_workflows,
"can_accept_new": can_accept_workflows,
"error_rate": error_rate,
"last_check": datetime.utcnow().isoformat()
}
except Exception as e:
return {
"status": "unhealthy",
"error": str(e),
"last_check": datetime.utcnow().isoformat()
}
```
#### Backup & Recovery
**State Persistence and Recovery:**
```python
class TaskGraphBackupManager:
"""Manage backup and recovery of task graph system state."""
def __init__(self, backup_config: Dict[str, Any]):
self.backup_interval = backup_config.get("interval", 300) # 5 minutes
self.retention_days = backup_config.get("retention_days", 7)
self.backup_storage = backup_config.get("storage", "local")
async def create_system_backup(self) -> Dict[str, Any]:
"""Create comprehensive system state backup."""
backup_id = f"backup_{int(time.time())}"
backup_data = {
"backup_id": backup_id,
"timestamp": datetime.utcnow().isoformat(),
"system_version": self._get_system_version(),
"active_workflows": await self._backup_active_workflows(),
"agent_states": await self._backup_agent_states(),
"context_cache": await self._backup_context_cache(),
"configuration": await self._backup_configuration(),
"performance_metrics": await self._backup_metrics()
}
# Store backup based on configuration
if self.backup_storage == "redis":
await self._store_redis_backup(backup_id, backup_data)
elif self.backup_storage == "s3":
await self._store_s3_backup(backup_id, backup_data)
else:
await self._store_local_backup(backup_id, backup_data)
# Cleanup old backups
await self._cleanup_old_backups()
return {
"backup_id": backup_id,
"size_bytes": len(json.dumps(backup_data)),
"components_backed_up": len(backup_data) - 3, # Exclude metadata
"storage_location": self.backup_storage
}
async def restore_from_backup(self, backup_id: str) -> Dict[str, Any]:
"""Restore system state from backup."""
# Load backup data
backup_data = await self._load_backup(backup_id)
if not backup_data:
raise ValueError(f"Backup {backup_id} not found")
restoration_log = []
try:
# Restore active workflows
if "active_workflows" in backup_data:
await self._restore_workflows(backup_data["active_workflows"])
restoration_log.append("workflows_restored")
# Restore agent states
if "agent_states" in backup_data:
await self._restore_agent_states(backup_data["agent_states"])
restoration_log.append("agent_states_restored")
# Restore context cache
if "context_cache" in backup_data:
await self._restore_context_cache(backup_data["context_cache"])
restoration_log.append("context_cache_restored")
return {
"success": True,
"backup_id": backup_id,
"restored_components": restoration_log,
"restoration_time": datetime.utcnow().isoformat()
}
except Exception as e:
return {
"success": False,
"backup_id": backup_id,
"error": str(e),
"partially_restored": restoration_log
}
```
#### Scaling Operations
**Horizontal Scaling Procedures:**
```python
class TaskGraphScaler:
"""Manage horizontal scaling of task graph system."""
async def scale_up(self, target_instances: int) -> Dict[str, Any]:
"""Scale up system to handle increased load."""
current_instances = await self._get_current_instance_count()
if target_instances <= current_instances:
return {"message": "No scaling needed", "current": current_instances}
# Calculate resource requirements
additional_instances = target_instances - current_instances
resource_requirements = self._calculate_scaling_resources(additional_instances)
# Check resource availability
available_resources = await self._check_resource_availability()
if not self._can_scale(resource_requirements, available_resources):
return {
"success": False,
"reason": "Insufficient resources",
"required": resource_requirements,
"available": available_resources
}
# Perform scaling
scaling_results = []
for i in range(additional_instances):
instance_result = await self._create_new_instance(
instance_id=f"task-graph-{current_instances + i + 1}"
)
scaling_results.append(instance_result)
return {
"success": True,
"scaled_from": current_instances,
"scaled_to": target_instances,
"new_instances": scaling_results
}
```
---
## Security & Compliance
### Security Considerations
#### Authentication & Authorization
**Multi-Level Security Framework:**
```python
# src/autodocs_mcp/task_graph/security/auth.py
from typing import Dict, List, Optional
from enum import Enum
import jwt
from datetime import datetime, timedelta
class SecurityLevel(Enum):
PUBLIC = "public"
AUTHENTICATED = "authenticated"
PRIVILEGED = "privileged"
ADMINISTRATIVE = "administrative"
class TaskGraphAuthManager:
"""Advanced authentication and authorization for task graph system."""
def __init__(self, security_config: Dict[str, Any]):
self.jwt_secret = security_config["jwt_secret"]
self.token_expiry = security_config.get("token_expiry_minutes", 60)
self.rbac_enabled = security_config.get("rbac_enabled", True)
async def authenticate_request(
self,
request_token: str,
required_level: SecurityLevel = SecurityLevel.AUTHENTICATED
) -> Dict[str, Any]:
"""Authenticate and authorize request."""
try:
# Decode JWT token
payload = jwt.decode(
request_token,
self.jwt_secret,
algorithms=["HS256"]
)
# Extract user information
user_id = payload.get("user_id")
user_roles = payload.get("roles", [])
security_clearance = payload.get("security_level", "public")
# Check authorization level
if not self._has_required_clearance(security_clearance, required_level):
return {
"authenticated": False,
"reason": "insufficient_privileges"
}
return {
"authenticated": True,
"user_id": user_id,
"roles": user_roles,
"security_level": security_clearance,
"expires_at": payload.get("exp")
}
except jwt.ExpiredSignatureError:
return {"authenticated": False, "reason": "token_expired"}
except jwt.InvalidTokenError:
return {"authenticated": False, "reason": "invalid_token"}
async def authorize_workflow_operation(
self,
user_context: Dict[str, Any],
operation: str,
resource: str
) -> bool:
"""Authorize specific workflow operations."""
if not self.rbac_enabled:
return True
user_roles = user_context.get("roles", [])
# Define operation permissions
operation_permissions = {
"submit_workflow": ["user", "developer", "admin"],
"cancel_workflow": ["developer", "admin"],
"view_workflow": ["user", "developer", "admin"],
"modify_system": ["admin"],
"access_sensitive_data": ["privileged_user", "admin"]
}
required_roles = operation_permissions.get(operation, ["admin"])
return any(role in user_roles for role in required_roles)
```
#### Data Protection
**Context Isolation and Security:**
```python
class SecureContextManager:
"""Security-hardened context manager with data isolation."""
def __init__(self):
self.encryption_key = self._load_encryption_key()
self.access_audit_log = SecurityAuditLog()
async def create_secure_context(
self,
context_data: Dict[str, Any],
security_classification: str,
access_permissions: List[str]
) -> SecureContext:
"""Create security-hardened context with encryption and access control."""
# Classify and encrypt sensitive data
encrypted_context = {}
for key, value in context_data.items():
if self._is_sensitive_data(key, value):
encrypted_context[key] = self._encrypt_data(value)
else:
encrypted_context[key] = value
# Create secure context wrapper
secure_context = SecureContext(
context_data=encrypted_context,
classification=security_classification,
access_permissions=access_permissions,
created_at=datetime.utcnow(),
encryption_enabled=True
)
# Log context creation
await self.access_audit_log.log_context_access(
operation="create",
context_id=secure_context.context_id,
classification=security_classification
)
return secure_context
async def access_secure_context(
self,
context_id: str,
requesting_agent: str,
operation: str
) -> Optional[Dict[str, Any]]:
"""Access secure context with authorization and auditing."""
# Load secure context
secure_context = await self._load_secure_context(context_id)
if not secure_context:
return None
# Check access permissions
if not self._check_access_permission(
requesting_agent,
secure_context.access_permissions,
operation
):
await self.access_audit_log.log_access_denied(
agent=requesting_agent,
context_id=context_id,
operation=operation
)
return None
# Decrypt sensitive data for authorized access
decrypted_context = {}
for key, value in secure_context.context_data.items():
if self._is_encrypted(value):
decrypted_context[key] = self._decrypt_data(value)
else:
decrypted_context[key] = value
# Log successful access
await self.access_audit_log.log_context_access(
operation="access",
agent=requesting_agent,
context_id=context_id
)
return decrypted_context
```
#### Audit Logging
**Comprehensive Security Audit Trail:**
```python
class SecurityAuditLog:
"""Comprehensive security audit logging for compliance."""
def __init__(self, config: Dict[str, Any]):
self.log_retention_days = config.get("retention_days", 90)
self.encrypt_logs = config.get("encrypt_audit_logs", True)
self.compliance_mode = config.get("compliance_mode", "standard")
async def log_workflow_security_event(
self,
event_type: str,
workflow_id: str,
user_id: str,
details: Dict[str, Any]
) -> None:
"""Log security-relevant workflow events."""
audit_entry = {
"timestamp": datetime.utcnow().isoformat(),
"event_type": event_type,
"workflow_id": workflow_id,
"user_id": user_id,
"ip_address": details.get("ip_address"),
"user_agent": details.get("user_agent"),
"security_level": details.get("security_level"),
"operation": details.get("operation"),
"resource": details.get("resource"),
"success": details.get("success", True),
"risk_score": self._calculate_risk_score(event_type, details)
}
# Add compliance-specific fields
if self.compliance_mode == "hipaa":
audit_entry.update(self._add_hipaa_fields(details))
elif self.compliance_mode == "sox":
audit_entry.update(self._add_sox_fields(details))
# Store audit entry
await self._store_audit_entry(audit_entry)
# Trigger alerts for high-risk events
if audit_entry["risk_score"] >= 8.0:
await self._trigger_security_alert(audit_entry)
```
### Integration Security
#### External API Security
**Secure Communication with External Systems:**
```python
class SecureExternalIntegration:
"""Security-hardened external system integration."""
def __init__(self, security_config: Dict[str, Any]):
self.api_keys = security_config["api_keys"]
self.rate_limits = security_config.get("rate_limits", {})
self.allowed_domains = security_config.get("allowed_domains", [])
async def make_secure_api_call(
self,
endpoint: str,
method: str,
data: Dict[str, Any],
user_context: Dict[str, Any]
) -> Dict[str, Any]:
"""Make secure API call with rate limiting and validation."""
# Validate endpoint domain
if not self._is_allowed_domain(endpoint):
raise SecurityError(f"Domain not allowed: {endpoint}")
# Check rate limits
if not await self._check_rate_limit(user_context["user_id"], endpoint):
raise RateLimitError("API rate limit exceeded")
# Sanitize outgoing data
sanitized_data = self._sanitize_outgoing_data(data)
# Add authentication
headers = self._add_authentication_headers(endpoint)
# Make API call with timeout and retries
response = await self._make_http_request(
endpoint=endpoint,
method=method,
data=sanitized_data,
headers=headers,
timeout=30
)
# Validate and sanitize response
validated_response = self._validate_api_response(response)
# Log API call for audit
await self._log_api_call(
endpoint=endpoint,
user_id=user_context["user_id"],
success=response.status_code < 400
)
return validated_response
```
---
## Future Architecture Evolution
### Extensibility Framework
#### New Agent Integration
**Plugin Architecture for Custom Agents:**
```python
# src/autodocs_mcp/task_graph/plugins/agent_plugin.py
from abc import ABC, abstractmethod
from typing import Dict, List, Any, Optional
class AgentPlugin(ABC):
"""Base class for custom agent plugins."""
@abstractmethod
def get_plugin_metadata(self) -> Dict[str, Any]:
"""Return plugin metadata including capabilities and requirements."""
pass
@abstractmethod
async def initialize_plugin(self, config: Dict[str, Any]) -> None:
"""Initialize plugin with configuration."""
pass
@abstractmethod
async def register_capabilities(self) -> List[str]:
"""Register agent capabilities with the system."""
pass
@abstractmethod
async def execute_plugin_task(
self,
task: Task,
context: TaskContext
) -> TaskResult:
"""Execute a task assigned to this plugin."""
pass
class CustomDomainAgent(AgentPlugin):
"""Example custom domain agent plugin."""
def __init__(self, domain_expertise: str):
self.domain = domain_expertise
self.capabilities = []
def get_plugin_metadata(self) -> Dict[str, Any]:
return {
"plugin_name": f"{self.domain}_agent",
"plugin_version": "1.0.0",
"author": "Custom Developer",
"domain_expertise": self.domain,
"required_dependencies": ["domain-specific-lib>=1.0.0"],
"supported_task_types": [f"{self.domain}_analysis", f"{self.domain}_optimization"]
}
async def initialize_plugin(self, config: Dict[str, Any]) -> None:
"""Initialize custom domain agent."""
# Load domain-specific knowledge
self.knowledge_base = await self._load_domain_knowledge(
config.get("knowledge_base_path")
)
# Initialize domain-specific tools
self.domain_tools = await self._initialize_domain_tools(
config.get("tools_config", {})
)
# Register capabilities based on available tools and knowledge
self.capabilities = await self._discover_capabilities()
async def register_capabilities(self) -> List[str]:
return self.capabilities
async def execute_plugin_task(
self,
task: Task,
context: TaskContext
) -> TaskResult:
"""Execute domain-specific task."""
if task.task_type == f"{self.domain}_analysis":
return await self._perform_domain_analysis(task, context)
elif task.task_type == f"{self.domain}_optimization":
return await self._perform_domain_optimization(task, context)
else:
raise ValueError(f"Unsupported task type: {task.task_type}")
```
#### Custom Workflow Patterns
**Extensible Workflow Pattern System:**
```python
class WorkflowPatternRegistry:
"""Registry for custom workflow execution patterns."""
def __init__(self):
self.patterns = {}
self._register_builtin_patterns()
def register_pattern(
self,
pattern_name: str,
pattern_class: WorkflowPattern
) -> None:
"""Register a custom workflow pattern."""
# Validate pattern implementation
if not self._validate_pattern(pattern_class):
raise ValueError(f"Invalid pattern implementation: {pattern_name}")
self.patterns[pattern_name] = pattern_class
async def execute_pattern(
self,
pattern_name: str,
task_graph: TaskGraph,
context: Dict[str, Any]
) -> WorkflowResult:
"""Execute workflow using specified pattern."""
if pattern_name not in self.patterns:
raise ValueError(f"Unknown workflow pattern: {pattern_name}")
pattern_instance = self.patterns[pattern_name]()
return await pattern_instance.execute(task_graph, context)
class MapReduceWorkflowPattern(WorkflowPattern):
"""Map-Reduce pattern for parallel data processing workflows."""
async def execute(
self,
task_graph: TaskGraph,
context: Dict[str, Any]
) -> WorkflowResult:
"""Execute map-reduce workflow pattern."""
# Phase 1: Map - Distribute data processing tasks
map_tasks = self._identify_map_tasks(task_graph)
map_results = await self._execute_parallel_tasks(map_tasks)
# Phase 2: Shuffle - Organize intermediate results
shuffled_data = await self._shuffle_intermediate_results(map_results)
# Phase 3: Reduce - Combine results
reduce_tasks = self._create_reduce_tasks(shuffled_data)
final_results = await self._execute_reduce_tasks(reduce_tasks)
return WorkflowResult(
success=True,
pattern="map_reduce",
results=final_results,
performance_metrics=self._collect_performance_metrics()
)
```
### Performance Enhancement Roadmap
#### Machine Learning Integration
**Predictive Optimization with ML:**
```python
class MLOptimizationEngine:
"""Machine learning-powered optimization for task graph execution."""
def __init__(self):
self.task_duration_model = None
self.agent_performance_model = None
self.workload_prediction_model = None
async def initialize_ml_models(self) -> None:
"""Initialize and train ML models from historical data."""
# Load historical execution data
historical_data = await self._load_execution_history()
# Train task duration prediction model
self.task_duration_model = await self._train_duration_model(
historical_data["task_executions"]
)
# Train agent performance prediction model
self.agent_performance_model = await self._train_performance_model(
historical_data["agent_metrics"]
)
# Train workload prediction model
self.workload_prediction_model = await self._train_workload_model(
historical_data["system_metrics"]
)
async def predict_optimal_execution_plan(
self,
task_graph: TaskGraph
) -> OptimizedExecutionPlan:
"""Use ML to predict optimal execution plan."""
# Predict task durations
predicted_durations = {}
for task in task_graph.tasks:
duration = await self.task_duration_model.predict(
task_features=self._extract_task_features(task)
)
predicted_durations[task.task_id] = duration
# Predict optimal agent assignments
optimal_assignments = {}
for task in task_graph.tasks:
agent_scores = await self.agent_performance_model.predict_scores(
task_features=self._extract_task_features(task),
available_agents=self._get_available_agents()
)
optimal_assignments[task.task_id] = max(agent_scores, key=agent_scores.get)
# Optimize execution sequence
optimized_sequence = await self._optimize_execution_sequence(
task_graph, predicted_durations, optimal_assignments
)
return OptimizedExecutionPlan(
task_assignments=optimal_assignments,
execution_sequence=optimized_sequence,
predicted_completion_time=sum(predicted_durations.values()),
confidence_score=self._calculate_prediction_confidence()
)
```
### Technology Evolution Plans
#### Distributed System Enhancement
**Multi-Node Task Graph Execution:**
```python
class DistributedTaskGraphSystem:
"""Distributed execution system for large-scale task graphs."""
def __init__(self, cluster_config: Dict[str, Any]):
self.cluster_nodes = cluster_config["nodes"]
self.load_balancer = DistributedLoadBalancer()
self.consensus_manager = ConsensusManager()
async def distribute_workflow(
self,
workflow: WorkflowState
) -> DistributedWorkflowPlan:
"""Distribute workflow across multiple nodes."""
# Analyze task graph for optimal distribution
distribution_analysis = await self._analyze_distribution_opportunities(
workflow.task_graph
)
# Assign tasks to optimal nodes
node_assignments = await self._assign_tasks_to_nodes(
workflow.tasks,
distribution_analysis
)
# Create distributed execution plan
execution_plan = DistributedWorkflowPlan(
workflow_id=workflow.workflow_id,
node_assignments=node_assignments,
coordination_protocol="raft",
fault_tolerance_level="high"
)
# Replicate critical state across nodes
await self._replicate_workflow_state(workflow, execution_plan)
return execution_plan
async def execute_distributed_workflow(
self,
execution_plan: DistributedWorkflowPlan
) -> DistributedWorkflowResult:
"""Execute workflow across distributed cluster."""
# Start coordination protocol
coordination_session = await self.consensus_manager.start_session(
execution_plan.workflow_id
)
# Execute tasks on assigned nodes
node_futures = []
for node_id, task_group in execution_plan.node_assignments.items():
node_future = self._execute_tasks_on_node(node_id, task_group)
node_futures.append(node_future)
# Wait for completion with fault tolerance
results = await self._wait_for_distributed_completion(
node_futures,
fault_tolerance_level=execution_plan.fault_tolerance_level
)
# Aggregate results
final_result = await self._aggregate_distributed_results(results)
return final_result
```
---
## Conclusion
The Task-Graph Workflow System represents a significant architectural evolution of the AutoDocs MCP Server, transforming it from a documentation intelligence tool into a comprehensive multi-agent orchestration platform. This system provides:
### Key Architectural Strengths
1. **Proven Foundation**: Built on the robust, production-tested AutoDocs MCP Server with 8 core tools
2. **Intelligent Orchestration**: Advanced task decomposition and agent coordination capabilities
3. **Hierarchical Context Management**: Multi-level context architecture optimized for AI workflows
4. **Enterprise Scalability**: Production-grade monitoring, security, and operational features
### Implementation Readiness
- **Immediate Development**: Clear implementation guidelines and code templates
- **Incremental Adoption**: Can be deployed alongside existing AutoDocs functionality
- **Extensible Design**: Plugin architecture supports custom agents and workflow patterns
- **Production Operations**: Comprehensive deployment, monitoring, and security frameworks
### Strategic Value
This architecture enables organizations to:
- **Automate Complex Workflows**: Handle multi-step processes requiring diverse expertise
- **Scale AI Capabilities**: Coordinate multiple AI agents for enterprise-scale automation
- **Maintain Quality**: Built-in validation, conflict resolution, and quality assurance
- **Ensure Reliability**: Production-grade error handling, monitoring, and recovery
The Task-Graph Workflow System positions the AutoDocs project at the forefront of AI-powered workflow automation, providing a foundation for sophisticated multi-agent applications while maintaining the reliability and performance standards established by the current MCP server implementation.
---
**Document Classification**: Technical Architecture Specification
**Review Status**: Ready for Technical Review
**Implementation Priority**: Strategic Enhancement
**Expected Development Timeline**: 12-16 weeks for MVP, 6 months for full feature set