Skip to main content
Glama

GLM-4.6 MCP Server

by bobvasic
ARCHITECTURE.md7.16 kB
# System Architecture Documentation ## Overview The GLM-4.6 MCP Server implements a three-tier architecture enabling seamless integration between Claude 4.5 Sonnet (via Warp Terminal) and the GLM-4.6 language model through the Model Context Protocol. --- ## Architecture Layers ### 1. Protocol Layer (MCP Interface) **Responsibility**: Handles MCP protocol communication via stdio transport **Components**: - `Server`: MCP SDK server instance managing protocol handshake and message routing - `StdioServerTransport`: Bidirectional stdio communication channel - Request Handlers: Schema-validated request processors for `ListTools` and `CallTool` **Data Flow**: ``` Warp Terminal (Claude) → stdin → MCP Server → Request Router → Tool Handler stdout ← Response ← Tool Handler ← ``` ### 2. Application Layer (Business Logic) **Responsibility**: Tool orchestration, input validation, and response formatting **Components**: - **Tool Registry**: Declarative tool definitions with JSON schemas - **Tool Router**: Dispatches requests to appropriate handlers - **Error Handler**: Centralized exception handling with sanitized error messages **Tools Implemented**: 1. `consult_architecture`: General architectural consultation 2. `analyze_code_architecture`: Code analysis with architectural focus 3. `design_system_architecture`: Complete system design from requirements 4. `review_technical_decision`: Technical decision evaluation ### 3. Integration Layer (GLM-4.6 Client) **Responsibility**: API communication, authentication, error handling, retry logic **Components**: - `GLMClient`: Axios-based HTTP client with authentication middleware - Request Builder: Constructs API-compliant request payloads - Response Parser: Extracts relevant data from GLM API responses - Error Handler: Maps API errors to user-friendly messages **API Specifications**: - **Endpoint**: `https://open.bigmodel.cn/api/paas/v4/chat/completions` - **Authentication**: Bearer token (API key) - **Model**: `glm-4-6` - **Parameters**: temperature (0.7), top_p (0.9), max_tokens (4096) --- ## Communication Patterns ### Request Flow ``` ┌──────────────┐ │ Claude Agent │ └──────┬───────┘ │ MCP Request (JSON-RPC) ▼ ┌─────────────────────┐ │ MCP Server │ │ ┌───────────────┐ │ │ │ Request │ │ │ │ Validator │ │ │ └───────┬───────┘ │ │ ▼ │ │ ┌───────────────┐ │ │ │ Tool Router │ │ │ └───────┬───────┘ │ │ ▼ │ │ ┌───────────────┐ │ │ │ GLM Client │ │ │ └───────┬───────┘ │ └──────────┼──────────┘ │ HTTPS POST ▼ ┌──────────────┐ │ GLM-4.6 API │ └──────┬───────┘ │ JSON Response ▼ [Response Path Reverses] ``` ### Error Handling Strategy **Layered Error Handling**: 1. **Network Errors**: Axios interceptors catch connection failures 2. **API Errors**: HTTP status codes mapped to descriptive messages 3. **Validation Errors**: JSON schema validation failures 4. **Business Logic Errors**: Application-level exception handling **Error Response Format**: ```typescript { content: [{ type: 'text', text: 'Error: <sanitized_message>' }], isError: true } ``` --- ## Security Architecture ### API Key Management - **Storage**: Environment variable (`GLM_API_KEY`) - **Access**: Loaded once at server initialization - **Transport**: HTTPS with Bearer token authentication - **Never Logged**: API keys excluded from all logging output ### Input Validation - **Schema Validation**: All tool inputs validated against JSON schemas - **Sanitization**: User input sanitized before API transmission - **Length Limits**: Enforced to prevent DoS via oversized requests ### Transport Security - **Protocol**: TLS 1.2+ for all API communications - **Headers**: Content-Type, Authorization headers properly set - **Timeout**: 60s timeout prevents hanging connections --- ## Scalability Considerations ### Current Architecture - **Concurrency**: Single-threaded, sequential request processing - **State**: Stateless design enables horizontal scaling - **Resource Usage**: Memory footprint ~50MB per instance ### Scaling Strategies **Horizontal Scaling**: - Deploy multiple server instances behind load balancer - Each Warp Terminal instance connects to dedicated server - No shared state requirements **Performance Optimization**: - Implement request caching for repeated queries - Connection pooling for API client - Batch processing for multiple tool calls --- ## Deployment Architecture ### Development Environment ``` Developer Machine ├── Warp Terminal (MCP Client) ├── GLM MCP Server (Node.js process) └── .env (API credentials) ``` ### Production Considerations **Containerization**: ```dockerfile FROM node:18-alpine WORKDIR /app COPY package*.json ./ RUN npm ci --production COPY build/ ./build/ CMD ["node", "build/index.js"] ``` **Orchestration**: - Kubernetes: StatefulSet for persistent connections - Docker Compose: Multi-instance deployment - Process Managers: PM2 for auto-restart and monitoring --- ## Technology Stack | Component | Technology | Version | Purpose | |-----------|-----------|---------|---------| | Runtime | Node.js | ≥18.0.0 | JavaScript execution | | Language | TypeScript | 5.7 | Type-safe development | | Protocol | MCP SDK | 1.0.4 | Model Context Protocol | | HTTP Client | Axios | 1.7.9 | API communication | | Config | dotenv | 16.4.7 | Environment management | --- ## Monitoring & Observability ### Logging Strategy - **stderr**: Operational logs (server start, errors) - **Application Logs**: Tool invocations, API calls - **Error Logs**: Full stack traces with sanitized data ### Metrics to Monitor - Request latency (p50, p95, p99) - API error rates - Token usage - Concurrent connections - Memory/CPU utilization ### Health Checks ```bash # Server responsiveness echo '{"jsonrpc":"2.0","method":"tools/list","id":1}' | node build/index.js # API connectivity curl -H "Authorization: Bearer $GLM_API_KEY" \ https://open.bigmodel.cn/api/paas/v4/models ``` --- ## Future Architecture Enhancements 1. **Caching Layer**: Redis-based response caching for repeated queries 2. **Rate Limiting**: Token bucket algorithm for API quota management 3. **Circuit Breaker**: Prevent cascade failures during API outages 4. **Streaming Support**: Real-time response streaming for long outputs 5. **Multi-Model Support**: Extend to GLM-4-Plus, GLM-4-Air variants --- **Architecture Version**: 1.0.0 **Last Updated**: 2025-01-18 **Maintained by**: CyberLink Security <info@cyberlinksec.com>

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/bobvasic/glm-mcp-server'

If you have feedback or need assistance with the MCP directory API, please join our Discord server