Click on "Install Server".
Wait a few minutes for the server to deploy. Once ready, it will show a "Started" state.
In the chat, type
@followed by the MCP server name and your instructions, e.g., "@mcp-skillsfind skills for Python testing in my current project"
That's it! The server will respond to your query, and you can continue using it as needed.
Here is a step-by-step guide with screenshots.
mcp-skillset
Dynamic RAG-powered skills for code assistants via Model Context Protocol (MCP)
mcp-skillset is a standalone Python application that provides intelligent, context-aware skills to code assistants through hybrid RAG (vector + knowledge graph). Unlike static skills that load at startup, mcp-skillset enables runtime skill discovery, automatic recommendations based on your project's toolchain, and dynamic loading optimized for your workflow.
Key Features
π Zero Config:
mcp-skillset setuphandles everything automaticallyπ§ Intelligent: Auto-detects your project's toolchain (Python, TypeScript, Rust, Go, etc.)
π Dynamic Discovery: Vector similarity + knowledge graph for better skill finding
π¦ Multi-Source: Pulls skills from multiple git repositories
β‘ On-Demand Loading: Skills loaded when needed, not all at startup
π MCP Native: First-class Model Context Protocol integration
π Security First: Multi-layer defense against prompt injection and malicious skills
Security
MCP Skillset implements comprehensive security validation to protect against malicious skills from public repositories.
Security Features
π‘οΈ Prompt Injection Detection: Automatic detection of instruction override attempts, role hijacking, and context escape
π Threat Classification: Multi-level threat detection (BLOCKED, DANGEROUS, SUSPICIOUS)
π·οΈ Repository Trust Levels: TRUSTED (official), VERIFIED (community), UNTRUSTED (public)
π Size Limits: DoS prevention through content size enforcement
π― Content Sanitization: All skills wrapped in clear boundaries to prevent context escape
Trust Levels
Level | Description | Security Policy |
TRUSTED | Official Anthropic repos | Minimal filtering (only BLOCKED threats) |
VERIFIED | Known community repos | Moderate filtering (BLOCKED + DANGEROUS) |
UNTRUSTED | Public repos (default) | Strict filtering (all threats) |
Quick Security Check
For detailed security information, threat models, and best practices, see SECURITY.md.
Installation
Prerequisites
Python 3.11 or higher
Claude Code (for Claude Code integration) with
claudeCLI available
With Homebrew (macOS/Linux)
The easiest way to install on macOS or Linux:
With uv (Recommended - Fastest)
uv is the fastest way to install Python applications:
With pipx (Alternative)
pipx is a reliable alternative for installing Python CLI applications:
With pip (Fallback)
Standard pip installation (not recommended for CLI tools):
From Source
Local Development (Without Installation)
For development, you can run mcp-skillset directly from source without installing:
The mcp-skillset-dev script:
Runs the package from source code (not installed version)
Uses local virtual environment if available
Sets up PYTHONPATH automatically
Passes all arguments through to the CLI
This is useful for:
Testing changes without reinstalling
Developing new features
Debugging with source code
Contributing to the project
Note: For production use, install the package normally with uv tool install mcp-skillset or pipx install mcp-skillset.
First-Run Requirements
Important: On first run, mcp-skillset will automatically download a ~90MB sentence-transformer model (all-MiniLM-L6-v2) for semantic search. This happens during the initial mcp-skillset setup or when you first run any command that requires indexing.
Requirements:
β Active internet connection
β ~100MB free disk space
β 2-5 minutes for initial download (depending on connection speed)
Model Caching:
Models are cached in
~/.cache/huggingface/for future useSubsequent runs use the cached model (no download required)
The cache persists across mcp-skillset updates
Building Progressive Skills
mcp-skillset now includes the ability to create custom progressive skills that become immediately available to Claude Code and other AI assistants. Skills are stored in ~/.claude/skills/ and loaded automatically.
What are Progressive Skills?
Progressive skills are modular capabilities that:
Load in two stages: Lightweight metadata (~100 tokens) at startup, full body (<5k tokens) when activated
Auto-activate based on project context (toolchain, frameworks, keywords)
Persist across sessions - once created, always available
Follow best practices - templates ensure quality and consistency
Creating Skills
CLI: Interactive Mode (Recommended)
You'll be prompted for:
Name: Skill identifier (e.g., "FastAPI Testing")
Description: What it does and when to use it
Domain: Category (e.g., "web development")
Tags: Keywords for discovery (e.g., "fastapi,pytest,testing")
Template: Choose from specialized templates
CLI: Command-Line Mode
CLI: Preview Mode
Preview the generated skill without deploying:
MCP Tool (For AI Agents)
Available Templates
Template | Best For | Use Cases |
web-development | Web apps | Frontend, backend, full-stack patterns |
api-development | APIs | REST, GraphQL, authentication, rate limiting |
testing | QA workflows | TDD, unit/integration/E2E testing |
Note: The base template is currently recommended for advanced users only due to validation limitations. Use specialized templates for production skills.
Examples
Creating a FastAPI testing skill:
Creating a GraphQL API skill:
Creating a TDD workflow skill:
Deployment
Skills are automatically deployed to ~/.claude/skills/skill-name/SKILL.md and become immediately available to:
Claude Code (VS Code extension)
Claude Desktop (standalone app)
Auggie (if configured)
Skill Structure
Generated skills include:
YAML Frontmatter: Metadata (name, description, tags, version)
Overview: What the skill does
When to Use: Activation context
Core Principles: Best practices with examples
Common Patterns: Proven approaches
Anti-Patterns: What to avoid
Testing Strategies: Validation approaches
Related Skills: Complementary skills
Next Steps
After creating skills:
Test activation: Start a project matching your skill's tags
Verify loading: Check that Claude references your skill
Iterate: Update skills based on usage
Share: Export skills for team use
For detailed documentation, see:
API Reference: docs/skill-builder-usage.md
Examples: examples/skill_builder_demo.py
QA Report: QA_REPORT_SKILL_BUILDER.md
Quick Start
1. Setup
Run the interactive setup wizard to configure mcp-skillset for your project:
Note: The first run will download the embedding model (~90MB) before proceeding with setup. Allow 2-5 minutes for this initial download. Subsequent runs will be much faster.
This complete one-command setup will:
Download embedding model (first run only)
Detect your project's toolchain
Clone relevant skill repositories
Build vector + knowledge graph indices
Configure MCP server integration
Install and configure for all detected AI agents (Claude Desktop, Claude Code, Auggie)
For Claude Code: Uses the official
claude mcp addCLI commandFor other agents: Configures via JSON config files
Validate the setup
Tip: Use mcp-skillset setup --skip-agents if you prefer to configure AI agents manually using the install command.
2. Explore Available Skills
Before diving in, explore what's available:
3. Start the MCP Server
The server will start and expose skills to your code assistant via MCP protocol.
4. Use with Claude Code
Skills are automatically available in Claude Code. Try:
"What testing skills are available for Python?"
"Show me debugging skills"
"Recommend skills for my project"
"Use the pytest-fixtures skill to help me write better tests"
Real-World Usage Scenarios
Scenario 1: Starting a New Python Project
Scenario 2: Debugging Production Issues
Scenario 3: Code Review Preparation
Scenario 4: Learning New Framework
Project Structure
Architecture
mcp-skillset uses a hybrid RAG approach combining:
Vector Store (ChromaDB):
Fast semantic search over skill descriptions
Embeddings generated with sentence-transformers
Persistent local storage with minimal configuration
Knowledge Graph (NetworkX):
Skill relationships and dependencies
Category and toolchain associations
Related skill discovery
Toolchain Detection:
Automatic detection of programming languages
Framework and build tool identification
Intelligent skill recommendations
Configuration
Global Configuration (~/.mcp-skillset/config.yaml)
Hybrid Search Modes
The hybrid search system combines vector similarity (semantic search) with knowledge graph relationships (dependency traversal) to find relevant skills. You can tune the weighting to optimize for different use cases:
Available Presets:
Preset | Vector | Graph | Best For | Use Case |
| 70% | 30% | General purpose (default) | Balanced skill discovery with slight semantic emphasis |
| 90% | 10% | Natural language queries | "help me debug async code" β emphasizes semantic understanding |
| 30% | 70% | Related skill discovery | Starting from "pytest" β discovers pytest-fixtures, pytest-mock |
| 50% | 50% | Equal weighting | General purpose when unsure which approach is better |
When to use each mode:
current(default): Best for most users. Proven through testing to work well for typical skill discovery patterns.semantic_focused: Use when you have vague requirements or want fuzzy semantic matching. Good for concept-based searches like "help me with error handling" or "testing strategies".graph_focused: Use when you want to explore skill ecosystems and dependencies. Perfect for "what else works with X?" queries.balanced: Use when you want equal emphasis on both approaches, or as a starting point for experimentation.
Configuration Examples:
CLI Override:
You can override the config file setting using the --search-mode flag:
Project Configuration (.mcp-skillset.yaml)
CLI Commands
mcp-skillset provides a rich, interactive CLI with comprehensive command-line options and beautiful terminal output powered by Rich and Questionary.
Quick Reference
Command | Purpose | Key Options |
| Initial configuration wizard |
|
| View/modify configuration |
|
| Rebuild indices |
|
| Install for AI agents |
|
| Start MCP server |
|
| Create progressive skills |
|
| Find skills by query |
|
| List all skills |
|
| Show skill details | (skill-id argument) |
| Get recommendations |
|
| Interactive skill explorer |
|
| Add skill repository |
|
| List repositories | - |
| Update repositories | (optional repo-id) |
| Search GitHub for repos |
|
| Get trending repos |
|
| Search by GitHub topic |
|
| Verify SKILL.md files | (repo-url argument) |
| Show API rate limits | - |
| Health check | - |
| Usage statistics | - |
| Enrich prompts |
|
Global options: --version, --verbose, --debug, --help
Core Commands
setup - Initial Configuration
Auto-configure mcp-skillset for your project with intelligent toolchain detection and automatic agent installation.
What it does:
Downloads embedding model (~90MB, first run only)
Detects project toolchain (Python, TypeScript, Rust, Go, etc.)
Clones relevant skill repositories
Builds vector + knowledge graph indices
Configures MCP server integration
Automatically installs and configures for all detected AI agents (Claude Desktop, Claude Code, Auggie)
Validates setup completion
First-Run Note: Allow 2-5 minutes for initial model download. Subsequent runs are instant.
Agent Installation: The setup command now automatically detects and configures all supported AI agents on your system, providing a complete one-command installation experience similar to mcp-ticketer. Use --skip-agents if you prefer to configure agents manually with the install command.
config - Configuration Management
View or modify mcp-skillset configuration settings.
Configuration file: ~/.mcp-skillset/config.yaml
index - Rebuild Indices
Rebuild vector and knowledge graph indices from skill repositories.
Use cases:
After adding new repositories with
repo addWhen skill content has changed
Troubleshooting search issues
Switching embedding models
install - Agent Integration
Install MCP SkillSet configuration for AI agents with auto-detection.
Supported agents:
claude-desktop- Claude Desktop Appclaude-code- Claude Code CLIauggie- Auggie AI Assistantall- Install for all detected agents
build-skill - Progressive Skill Creation
Create custom progressive skills from templates. Skills are deployed to ~/.claude/skills/ for immediate use.
Parameters:
--name(required in standard mode): Skill name--description(required in standard mode): What the skill does (min 20 chars)--domain(required in standard mode): Category (e.g., "web development")--tags(optional): Comma-separated keywords--template(optional): Template choice (default: base)web-development- Full-stack web patternsapi-development- REST/GraphQL APIstesting- TDD and testing workflowsbase- Generic template (advanced users only)
--interactive(optional): Interactive mode with prompts--preview(optional): Show generated content without deploying--no-deploy(optional): Disable automatic deployment
Available Templates:
web-development: Frontend, backend, full-stack patterns β Production ready
api-development: REST, GraphQL, authentication β Production ready
testing: TDD, unit/integration/E2E testing β Production ready
base: Generic template β οΈ Advanced users only (validation limitations)
Output:
Skills deployed to:
~/.claude/skills/{skill-name}/SKILL.mdImmediately available to Claude Code, Claude Desktop, and Auggie
Validation results and warnings displayed
Skill ID and path returned
See also: Building Progressive Skills section for examples and detailed usage.
mcp - MCP Server
Start the Model Context Protocol server for integration with code assistants.
Server details:
Transport: stdio (standard input/output)
Protocol: Model Context Protocol v1.0
Tools exposed: skills_search, skill_get, skills_recommend, skill_categories, skills_reindex, skill_templates_list, skill_create
Search & Discovery Commands
search - Semantic Search
Search for skills using natural language queries with hybrid RAG (vector + knowledge graph).
Search modes:
current(default) - 70% semantic, 30% graphsemantic_focused- 90% semantic, 10% graph (best for fuzzy queries)graph_focused- 30% semantic, 70% graph (best for related skills)balanced- 50% semantic, 50% graph
Examples:
list - List All Skills
Display all available skills with filtering options.
Output formats:
Default: Rich panels with descriptions
Compact: Table view with ID, title, category
info / show - Skill Details
Show detailed information about a specific skill.
recommend - Smart Recommendations
Get intelligent skill recommendations based on your project's toolchain.
How it works:
Analyzes project directory (package.json, pyproject.toml, Cargo.toml, etc.)
Detects primary language and frameworks
Searches for relevant skills using detected toolchain
Ranks by relevance to your tech stack
Example output:
demo - Interactive Skill Explorer
Generate example prompts and explore skills interactively.
Features:
Browse all skills with Rich menu
Auto-generates relevant example questions
Extracts key concepts from skill instructions
Shows practical use cases
Example output:
Repository Management Commands
repo add - Add Repository
Add a new skill repository to your configuration.
Priority levels:
100: Highest (official repositories)
50: Medium (default, community repositories)
10: Low (experimental repositories)
repo list - List Repositories
Display all configured skill repositories.
Output includes:
Repository URL
Priority level
Auto-update status
Last update timestamp
Number of skills indexed
repo update - Update Repositories
Pull latest changes from skill repositories.
Note: After updating, run mcp-skillset index --incremental to index new skills.
GitHub Discovery Commands
Automatically discover skill repositories on GitHub.
discover search - Search GitHub
Search GitHub for skill repositories using natural language queries.
Features:
Natural language search queries
Automatic SKILL.md verification
Star count filtering
Rich metadata display (stars, forks, topics, license)
discover trending - Get Trending Repos
Find recently updated skill repositories.
Timeframes: week, month, year
discover topic - Search by Topic
Search repositories by GitHub topic.
Common topics:
claude-skills- Claude AI skillsanthropic-skills- Anthropic skillsmcp-skills- MCP protocol skillsai-skills- General AI skills
discover verify - Verify Repository
Verify that a repository contains SKILL.md files before adding.
Output includes:
SKILL.md verification status
Repository metadata (stars, forks, license)
Topics and description
Command to add repository if valid
discover limits - API Rate Limits
Check your current GitHub API rate limit status.
Rate limits:
Unauthenticated: 60 requests/hour
Authenticated (with token): 5000 requests/hour
To increase limits:
See also: GitHub Discovery Documentation for detailed usage and configuration.
Utility Commands
doctor - Health Check
Run comprehensive system health check and validation.
Checks performed:
Configuration file validity
Repository accessibility
Index integrity (vector + knowledge graph)
Embedding model availability
Database connectivity
Disk space and permissions
Example output:
stats - Usage Statistics
Display usage statistics and metrics.
Metrics displayed:
Total skills indexed
Skills by category
Skills by repository
Search query counts
Most used skills
Index size and memory usage
enrich - Prompt Enrichment
Enrich prompts with relevant skill context (advanced feature).
What it does:
Searches for relevant skills based on your prompt
Extracts key concepts and instructions from top matches
Augments your prompt with skill context
Outputs enriched prompt for use with LLMs
Global Options
All commands support these global flags:
Command Workflows
First-Time Setup Flow:
Daily Usage Pattern:
Adding New Skill Repository:
Shell Completions
Enable tab completion for the mcp-skillset command to speed up your workflow:
Quick Install
Bash (requires Bash 4.4+):
Zsh (macOS default):
Fish:
Features
β Complete all commands and subcommands
β Complete option flags (
--help,--limit, etc.)β Works with
mcp-skillset,mcp-skillset repo, and all other commands
Verification
Test completions are working:
Documentation
For detailed installation instructions, troubleshooting, and advanced usage, see docs/SHELL_COMPLETIONS.md.
MCP Tools
mcp-skillset provides 7 MCP tools for AI assistants:
skills_search - Semantic search with hybrid RAG (vector + knowledge graph)
skill_get - Retrieve complete skill details by ID
skills_recommend - Context-aware skill recommendations based on project toolchain
skill_categories - Browse available skill categories and toolchains
skills_reindex - Rebuild search indices (vector store + knowledge graph)
skill_templates_list - List available skill templates for progressive skill creation
skill_create - Create progressive skills from templates and deploy to ~/.claude/skills/
Tool Details
1. skills_search
Natural language semantic search over all indexed skills using hybrid RAG.
Parameters:
query(required): Search query stringlimit(optional): Maximum number of results (default: 10)category(optional): Filter by skill category
Returns: Array of matching skills with relevance scores
Example:
2. skill_get
Retrieve complete skill details and instructions by skill ID.
Parameters:
skill_id(required): Unique skill identifier
Returns: Full skill object with instructions, metadata, and examples
Example:
3. skills_recommend
Get intelligent skill recommendations based on project toolchain detection.
Parameters: None (auto-detects current project)
Returns: Array of recommended skills ranked by relevance to detected toolchain
Example:
4. skill_categories
List all available skill categories and toolchain associations.
Parameters: None
Returns: Array of category names with skill counts
Example:
5. skills_reindex
Rebuild vector store and knowledge graph indices from skill repositories.
Parameters:
force(optional): Force full reindex (default: false)
Returns: Indexing status and statistics
Example:
6. skill_templates_list
List available skill templates with descriptions and use cases.
Parameters: None
Returns: Array of templates with metadata (name, description, best_for, use_cases)
Example:
7. skill_create
Create progressive skills from templates. Skills are deployed to ~/.claude/skills/ for immediate use.
Parameters:
name(required): Skill namedescription(required): What the skill doesdomain(required): Category (e.g., "web development")tags(optional): List of keywordstemplate(optional): Template choice (web-development, api-development, testing, base)deploy(optional): Whether to deploy (default: true)
Returns: Status, skill_id, skill_path, validation results
Example:
Development
Requirements
Python 3.11+
Git
uv (recommended) or pip
Setup Development Environment
Running from Source (Development Mode)
Use the ./mcp-skillset-dev script to run commands directly from source without installation:
How it works:
Sets
PYTHONPATHto includesrc/directoryActivates local
.venvif presentRuns
python -m mcp_skills.cli.mainwith all arguments
When to use:
β Rapid iteration during development
β Testing changes without reinstalling
β Debugging with source code modifications
β Production deployments (use
pip installinstead)
Installed vs. Source:
Run Tests
Performance Benchmarks
mcp-skillset includes comprehensive performance benchmarks to track and prevent regressions:
Benchmark Categories:
Indexing Performance: Measure time to index 100, 1000, and 10000 skills
Search Performance: Track query latency (p50, p95, p99) for vector and hybrid search
Database Performance: Benchmark SQLite operations (lookup, query, batch insert)
Memory Usage: Monitor memory consumption during large-scale operations
Baseline Thresholds:
Index 100 skills: < 10 seconds
Index 1000 skills: < 100 seconds
Search query (p50): < 100ms
Search query (p95): < 500ms
SQLite lookup by ID: < 1ms
Benchmark Results:
Results are saved to
.benchmarks/directory (git-ignored)Use
make benchmark-compareto detect performance regressionsCI/CD can be configured to fail on significant performance degradation
Example Output:
Linting and Formatting
Security Scanning
mcp-skillset includes comprehensive security scanning to identify vulnerabilities in dependencies and code:
Automated Security (Dependabot + GitHub Actions)
Dependabot automatically:
Scans dependencies weekly for vulnerabilities
Creates pull requests for security updates
Groups minor/patch updates for easier review
GitHub Actions runs security scans on every push:
Safety: Python dependency vulnerability scanner
pip-audit: PyPI package vulnerability auditor
Bandit: Python code security linter
detect-secrets: Secret detection scanner
Manual Security Scanning
Security Reports
After running make security-check-full, reports are saved to .security-reports/:
safety-report.json- Dependency vulnerabilitiespip-audit-report.json- Package vulnerabilitiesbandit-report.json- Code security issues
Security Policy
For vulnerability reporting and security best practices, see .github/SECURITY.md.
Key security features:
Automated dependency scanning (Dependabot)
Weekly security scans (GitHub Actions)
Pre-publish security gate
Secret detection (detect-secrets)
Code security linting (Bandit)
Documentation
Deployment & Release
See docs/DEPLOY.md for the complete deployment and release workflow, including:
Automated release process with Claude MPM multi-agent coordination
PyPI publishing with stored credentials
Homebrew tap management (consolidated bobmatnyc/tools tap)
Pre-release validation, quality gates, and security scanning
Post-release verification across all channels
Rollback procedures and troubleshooting
Quick reference commands for next release
Architecture
See docs/architecture/README.md for detailed architecture design.
Skills Collections
See docs/skills/RESOURCES.md for a comprehensive index of skill repositories compatible with mcp-skillset, including:
Official Anthropic skills
Community collections (obra/superpowers, claude-mpm-skills, etc.)
Toolchain-specific skills (Python, TypeScript, Rust, Go, Java)
Operations & DevOps skills
MCP servers that provide skill-like capabilities
Troubleshooting
Claude CLI Integration
"Claude CLI not found" error
Symptom: Setup or installation fails with "Claude CLI not found" error.
Solutions:
Verify Claude Code is installed:
Make sure Claude Code (VS Code extension) is installed and activated
Check that the extension is up to date
Check if :
which claudeIf the command is not found, reinstall Claude Code
On macOS, the CLI should be at:
/usr/local/bin/claudeor in your PATH
Add to PATH if necessary:
# Find where Claude CLI is installed find /Applications -name "claude" 2>/dev/null # Add to PATH in your shell profile (~/.zshrc, ~/.bashrc, etc.) export PATH="/path/to/claude/bin:$PATH"Verify CLI is working:
claude --version claude mcp listFallback option: Use
--skip-agentsflag and configure manually:mcp-skillset setup --skip-agents # Then use: mcp-skillset install --agent claude-desktop
Model Download Issues
If you encounter problems downloading the embedding model on first run:
1. Check Internet Connection
The model is downloaded from HuggingFace Hub. Verify you can reach:
2. Manual Model Download
Pre-download the model manually if automatic download fails:
This downloads the model to ~/.cache/huggingface/ and verifies it works.
3. Proxy Configuration
If behind a corporate proxy, configure environment variables:
4. Offline/Air-Gapped Installation
For environments without internet access:
On a machine with internet:
Download the model:
python -c "from sentence_transformers import SentenceTransformer; SentenceTransformer('sentence-transformers/all-MiniLM-L6-v2')"Package the model cache:
cd ~/.cache/huggingface tar -czf sentence-transformers-model.tar.gz hub/
On the air-gapped machine:
Transfer
sentence-transformers-model.tar.gzto the target machineExtract to the HuggingFace cache directory:
mkdir -p ~/.cache/huggingface cd ~/.cache/huggingface tar -xzf /path/to/sentence-transformers-model.tar.gzInstall mcp-skillset (transfer wheel if needed):
pip install mcp-skillset # Or install from wheelVerify the setup:
mcp-skillset doctor
5. Custom Cache Location
If you need to use a different cache directory:
6. Disk Space Issues
Check available space in the cache directory:
The model requires ~90MB, but allow ~100MB for temporary files during download.
7. Permission Issues
Ensure the cache directory is writable:
Common Issues
"Connection timeout" during model download
Check internet connection and firewall settings
Try manual download (see step 2 above)
Configure proxy if behind corporate network (see step 3 above)
"No space left on device"
Check disk space:
df -h ~/.cacheClear old HuggingFace cache:
rm -rf ~/.cache/huggingface/*Use custom cache location (see step 5 above)
"Permission denied" on cache directory
Fix permissions:
chmod 755 ~/.cache/huggingfaceOr use custom cache location with proper permissions
Slow initial setup
First run downloads ~90MB and builds indices
Expected time: 2-10 minutes depending on connection speed and number of skills
Subsequent runs use cached model and are much faster
Getting Help
If you encounter issues not covered here:
Check GitHub Issues
Review logs:
~/.mcp-skillset/logs/Run health check:
mcp-skillset doctorOpen a new issue with:
Error message and stack trace
Output of
mcp-skillset --versionOperating system and Python version
Steps to reproduce
Contributing
Contributions welcome! Please read our contributing guidelines first.
Fork the repository
Create a feature branch
Make your changes
Run
make qualityto ensure tests passSubmit a pull request
License
MIT License - see LICENSE for details.
Acknowledgments
Built on the Model Context Protocol
Inspired by Claude Skills
Uses ChromaDB for vector search
Embeddings via sentence-transformers
Links
PyPI Package: mcp-skillset on PyPI
Documentation: GitHub Wiki
Issue Tracker: GitHub Issues
MCP Registry: MCP Servers
Publishing Guide: docs/publishing.md
Status: β v0.5.0 - Production Ready | Test Coverage: 85-96% | Tests: 77 passing (48 unit + 29 security)