Recall
Long-term memory system for MCP-compatible AI assistants with semantic search and relationship tracking.
Features
Persistent Memory Storage: Store preferences, decisions, patterns, and session context
Semantic Search: Find relevant memories using natural language queries via ChromaDB vectors
Memory Relationships: Create edges between memories (supersedes, relates_to, caused_by, contradicts)
Namespace Isolation: Global memories vs project-scoped memories
Context Generation: Auto-format memories for session context injection
Deduplication: Content-hash based duplicate detection
Installation
Usage
Run as MCP Server
CLI Options
meta-mcp Configuration
Add Recall to your meta-mcp servers.json:
Or for Claude Code / other MCP clients (claude.json):
Environment Variables
Variable | Default | Description |
|
| SQLite database file path |
|
| ChromaDB persistent storage directory |
|
| ChromaDB collection name |
|
| Ollama server URL |
|
| Embedding model name |
|
| Ollama request timeout in seconds |
|
| Logging level (DEBUG, INFO, WARNING, ERROR, CRITICAL) |
|
| Default namespace for memories |
|
| Default importance score (0.0-1.0) |
|
| Default token budget for context |
MCP Tool Examples
memory_store_tool
Store a new memory with semantic indexing:
Response:
memory_recall_tool
Search memories by semantic similarity:
Response:
memory_relate_tool
Create a relationship between memories:
Response:
memory_context_tool
Generate formatted context for session injection:
Response:
memory_forget_tool
Delete memories by ID or semantic search:
Or delete by search:
Response:
Architecture
Development
Requirements
Python 3.13+
Ollama with:
mxbai-embed-largemodel (required for semantic search)llama3.2model (optional, for session auto-capture hook)
~500MB disk space for ChromaDB indices
License
MIT