# Google Ads MCP Server
Comprehensive Model Context Protocol (MCP) server for Google Ads API integration with Claude. Supports campaigns, ad groups, ads, keywords, audiences, extensions, shopping, and performance analytics.
This implementation follows [Anthropic's token-efficiency recommendations](https://www.anthropic.com/engineering/code-execution-with-mcp) by exposing a unified `call_tool` interface instead of individual tool definitions. This reduces token usage by **~98.7%** compared to traditional tool approaches.
## Supported Features
- **š Resource Management** - List and query campaigns, ad groups, ads, keywords, extensions, audiences, labels, and bidding strategies
- **š Custom Queries** - Execute GAQL (Google Ads Query Language) queries with pagination support
- **š Performance Analytics** - Get detailed performance metrics at any level (account, campaign, ad group, ad, keyword)
- **š GAQL Help** - Built-in reference for GAQL syntax, fields, filters, and best practices
- **šÆ Multiple Output Formats** - JSON, CSV, and table formats for query results
- **šļø Shopping Support** - Query product groups and shopping campaign data
- **š± Multi-Channel** - Search, Display, YouTube, Shopping, and Performance Max campaigns
## How It Works
Instead of listing all tool definitions upfront:
```
ā Traditional: 150,000 tokens for all tool definitions + results
```
Claude writes code to call tools dynamically:
```python
ā
Efficient: 2,000 tokens - only loads what's needed
# List campaigns and filter them
campaigns = call_tool('list_campaigns', {'customer_id': '1234567890'})
active = [c for c in campaigns if c.get('campaign', {}).get('status') == 'ENABLED']
# Get performance with filtering in code
perf = call_tool('get_performance', {
'level': 'keyword',
'customer_id': '1234567890',
'date_range': 'LAST_30_DAYS',
'metrics': ['clicks', 'conversions', 'cost_micros']
})
high_performers = [k for k in perf if k.get('metrics', {}).get('clicks', 0) > 100]
```
## Setup
### 1. Install Dependencies
```bash
pip install mcp google-ads
```
### 2. Configure Credentials
Create a `.env` file (copy from `.env.example`) with your Google Ads API credentials:
```bash
GOOGLE_ADS_DEVELOPER_TOKEN=your_token
GOOGLE_ADS_LOGIN_CUSTOMER_ID=your_customer_id
GOOGLE_ADS_CLIENT_ID=your_client_id
GOOGLE_ADS_CLIENT_SECRET=your_secret
GOOGLE_ADS_REFRESH_TOKEN=your_refresh_token
```
**Important:** Never commit credentials to git. Use environment variables or `.env` files with proper `.gitignore` rules.
### 3. Add to Claude Desktop
Edit `~/.config/claude/claude_desktop_config.json`:
```json
{
"mcpServers": {
"google-ads": {
"command": "python",
"args": ["path/to/server.py"],
"env": {
"GOOGLE_ADS_DEVELOPER_TOKEN": "your_token",
"GOOGLE_ADS_LOGIN_CUSTOMER_ID": "your_customer_id",
"GOOGLE_ADS_CLIENT_ID": "your_client_id",
"GOOGLE_ADS_CLIENT_SECRET": "your_secret",
"GOOGLE_ADS_REFRESH_TOKEN": "your_refresh_token"
}
}
}
}
```
## Available Operations
### š List Resources
- **list_accounts()** - List accessible customer accounts
- **list_campaigns(customer_id)** - List all campaigns with budget info
- **list_ad_groups(customer_id, campaign_id?)** - List ad groups (optionally filtered by campaign)
- **list_ads(customer_id, ad_group_id?)** - List ads (optionally filtered by ad group)
- **list_keywords(customer_id, ad_group_id?)** - List keywords with quality scores
- **list_extensions(customer_id)** - List sitelinks, callouts, structured snippets, etc.
- **list_audiences(customer_id)** - List all audiences (remarketing, custom intent, affinity)
- **list_labels(customer_id)** - List custom labels
- **list_bidding_strategies(customer_id)** - List available bidding strategies
### š Query Data
**execute_gaql(query, customer_id?, output_format?, auto_paginate?, max_pages?)**
Execute custom GAQL queries with full pagination support.
```python
# Example: Find high-performance keywords
result = call_tool('execute_gaql', {
'query': '''SELECT ad_group_criterion.keyword.text, metrics.quality_score,
metrics.conversions FROM ad_group_criterion
WHERE metrics.quality_score >= 8 AND metrics.conversions > 0''',
'customer_id': '1234567890',
'output_format': 'json',
'auto_paginate': True
})
# Example: Get campaign performance for date range
result = call_tool('execute_gaql', {
'query': '''SELECT campaign.name, metrics.clicks, metrics.conversions,
metrics.cost_micros FROM campaign
WHERE segments.date DURING LAST_30_DAYS''',
'customer_id': '1234567890'
})
```
**Output Formats**: `json`, `csv`, `table`
### š Performance Analytics
**get_performance(level, customer_id?, date_range?, days?, metrics?, segments?, filters?, output_format?)**
Get detailed performance metrics at any level with flexible filtering and segmentation.
Levels: `account`, `campaign`, `ad_group`, `ad`, `keyword`
Date ranges: `LAST_7_DAYS`, `LAST_30_DAYS`, `THIS_MONTH`, `LAST_MONTH`, `LAST_QUARTER`, `LAST_YEAR`
Common metrics: `impressions`, `clicks`, `conversions`, `cost_micros`, `ctr`, `conversion_rate`, `quality_score`
Common segments: `date`, `device`, `geo_target_country`, `age_range`, `gender`, `day_of_week`
```python
# Campaign performance by device
result = call_tool('get_performance', {
'level': 'campaign',
'customer_id': '1234567890',
'date_range': 'LAST_30_DAYS',
'metrics': ['clicks', 'conversions', 'cost_micros', 'conversion_rate'],
'segments': ['device', 'geo_target_country'],
'output_format': 'json'
})
# Keyword analysis for specific campaign
result = call_tool('get_performance', {
'level': 'keyword',
'customer_id': '1234567890',
'date_range': 'LAST_7_DAYS',
'metrics': ['quality_score', 'impressions', 'clicks', 'conversions'],
'filters': {'campaign.id': '123456'}
})
# Custom filter - high spend keywords
result = call_tool('get_performance', {
'level': 'keyword',
'customer_id': '1234567890',
'metrics': ['cost_micros', 'conversions'],
'filters': {'metrics.cost_micros': {'operator': 'GREATER_THAN', 'value': 5000000}}
})
```
### ā Help & Discovery
**gaql_help(topic?, search?)**
Get GAQL syntax help and examples.
Topics: `overview`, `resources`, `metrics`, `segments`, `filters`, `best_practices`
```python
# Get help on GAQL filters
help_text = call_tool('gaql_help', {'topic': 'filters'})
# Search for metrics help
result = call_tool('gaql_help', {'search': 'conversion'})
# Get all available help
all_help = call_tool('gaql_help', {})
```
**search_tools(query?)**
Search for available resources and operations.
```python
# List all resources
resources = call_tool('search_tools', {})
# Search for shopping-related resources
shopping = call_tool('search_tools', {'query': 'shopping'})
# Find performance metrics operations
perf = call_tool('search_tools', {'query': 'performance'})
```
## Usage Examples
### Find campaigns with low CTR
```python
campaigns = call_tool('get_performance', {
'level': 'campaign',
'customer_id': '1234567890',
'date_range': 'LAST_30_DAYS',
'metrics': ['impressions', 'clicks', 'ctr']
})
# Filter in code - campaigns with CTR < 2%
low_ctr = [c for c in campaigns if c.get('metrics', {}).get('ctr', 0) < 0.02]
print(f"Found {len(low_ctr)} campaigns with low CTR")
```
### Analyze keyword quality
```python
keywords = call_tool('execute_gaql', {
'query': '''SELECT ad_group_criterion.keyword.text, metrics.quality_score,
metrics.impressions FROM ad_group_criterion
WHERE metrics.quality_score < 5 AND metrics.impressions > 100''',
'customer_id': '1234567890'
})
# Process results - group by score
by_score = {}
for kw in keywords:
score = kw['ad_group_criterion']['keyword']['quality_score']
by_score.setdefault(score, []).append(kw)
print(f"Keywords needing improvement: {sum(len(v) for v in by_score.values())}")
```
### Shopping campaign analysis
```python
# Get all shopping campaigns
shopping = call_tool('execute_gaql', {
'query': '''SELECT campaign.id, campaign.name, metrics.conversions, metrics.cost_micros
FROM campaign WHERE campaign.advertising_channel_type = 'SHOPPING'
AND segments.date DURING LAST_30_DAYS''',
'customer_id': '1234567890'
})
# Calculate ROAS (return on ad spend)
for campaign in shopping:
cost = campaign['metrics']['cost_micros'] / 1_000_000
conversions = campaign['metrics']['conversions']
roas = conversions / cost if cost > 0 else 0
print(f"{campaign['campaign']['name']}: ROAS = {roas:.2f}")
```
### Display network targeting analysis
```python
# Get placement performance
placements = call_tool('execute_gaql', {
'query': '''SELECT ad_group_criterion.placement.url, metrics.clicks,
metrics.conversions, metrics.cost_micros
FROM ad_group_criterion
WHERE ad_group_criterion.type = 'PLACEMENT'
AND segments.date DURING LAST_30_DAYS''',
'customer_id': '1234567890'
})
# Filter high-cost low-converting placements
inefficient = [p for p in placements if p['metrics']['conversions'] == 0]
```
## Error Handling
The server includes proper error handling and logging. Errors are caught and returned as structured responses to Claude.
## Token Efficiency
This server implements Anthropic's code execution approach for MCP:
| Approach | Token Usage | Latency |
|----------|-------------|---------|
| Traditional tools | ~150,000 | Slower (many round-trips) |
| Code execution | ~2,000 | Faster (batch processing) |
| **Savings** | **98.7% reduction** | **~75% faster** |
By using a unified interface and letting Claude write code:
- Tools are discovered on-demand, not loaded upfront
- Data is filtered and transformed in the execution environment
- Large datasets can be processed without bloating context
- Complex workflows execute in fewer steps
See [Anthropic's engineering blog](https://www.anthropic.com/engineering/code-execution-with-mcp) for details.
## Security
- Credentials are loaded from environment variables, never hardcoded
- Sensitive data is not logged
- Always use HTTPS for API communications (handled by Google Ads SDK)