Skip to main content
Glama
bkuri
by bkuri

Jesse MCP Server

An MCP (Model Context Protocol) server that exposes Jesse's algorithmic trading framework capabilities to LLM agents.

Status: Feature Complete ✅

All planned features implemented and tested. 32 tools available (17 core + 15 agent).

Quick Start

# Install dependencies pip install -r requirements.txt # Run server (stdio transport) python -m jesse_mcp # Run server (HTTP transport for opencode integration) python -m jesse_mcp --transport http --port 8100

Features

  • Backtesting - Single and batch backtest execution via Jesse REST API

  • Optimization - Hyperparameter tuning with walk-forward validation

  • Monte Carlo Analysis - Statistical robustness testing

  • Pairs Trading - Cointegration testing and strategy generation

  • Strategy Management - CRUD operations for trading strategies

  • Risk Analysis - VaR, stress testing, comprehensive risk reports

  • Agent Tools - 15 specialized tools for autonomous trading workflows

Architecture

LLM Agent ←→ MCP Protocol ←→ jesse-mcp ←→ Jesse REST API (localhost:9000) ↓ Mock Fallbacks (when Jesse unavailable)

Available Tools (32 Total)

Core Tools (17)

Phase 1: Backtesting

Tool

Description

backtest

Run single backtest with specified parameters

strategy_list

List available strategies

strategy_read

Read strategy source code

strategy_validate

Validate strategy code

Phase 2: Data & Analysis

Tool

Description

candles_import

Download candle data from exchanges

backtest_batch

Run concurrent multi-asset backtests

analyze_results

Extract insights from backtest results

walk_forward

Walk-forward analysis for overfitting detection

Phase 3: Optimization

Tool

Description

optimize

Optimize hyperparameters using Optuna

Phase 4: Risk Analysis

Tool

Description

monte_carlo

Monte Carlo simulations for risk analysis

var_calculation

Value at Risk (historical, parametric, Monte Carlo)

stress_test

Test under extreme market scenarios

risk_report

Comprehensive risk assessment

Phase 5: Pairs Trading

Tool

Description

correlation_matrix

Cross-asset correlation analysis

pairs_backtest

Backtest pairs trading strategies

factor_analysis

Decompose returns into systematic factors

regime_detector

Identify market regimes and transitions

Agent Tools (15)

Specialized tools for autonomous trading workflows:

Tool

Description

strategy_suggest_improvements

AI-powered strategy enhancement suggestions

strategy_compare_strategies

Compare multiple strategies side-by-side

strategy_optimize_pair_selection

Optimize pairs trading selection

strategy_analyze_optimization_impact

Analyze impact of optimization changes

risk_analyze_portfolio

Portfolio-level risk analysis

risk_stress_test

Advanced stress testing

risk_assess_leverage

Leverage risk assessment

risk_recommend_hedges

Hedging recommendations

risk_analyze_drawdown_recovery

Drawdown recovery analysis

backtest_comprehensive

Full backtest with all metrics

backtest_compare_timeframes

Compare performance across timeframes

backtest_optimize_parameters

Quick parameter optimization

backtest_monte_carlo

Backtest with Monte Carlo analysis

backtest_analyze_regimes

Regime-aware backtest analysis

backtest_validate_significance

Statistical significance validation

Testing

# Run all tests JESSE_URL=http://localhost:9000 JESSE_PASSWORD=test pytest -v # Run single test pytest tests/test_server.py::test_tools_list -v

Status: 12/12 tests passing

Local Development

Prerequisites

  • Python 3.10+

  • Jesse 1.13.x running on localhost:9000

  • PostgreSQL on localhost:5432

  • Redis on localhost:6379

Start Jesse Stack (Podman)

# Start infrastructure podman run -d --name jesse-postgres --network host \ -e POSTGRES_USER=jesse_user -e POSTGRES_PASSWORD=password -e POSTGRES_DB=jesse_db \ docker.io/library/postgres:14-alpine podman run -d --name jesse-redis --network host \ docker.io/library/redis:6-alpine redis-server --save "" --appendonly no # Start Jesse podman run -d --name jesse --network host \ -v /path/to/jesse-bot:/home:z \ docker.io/salehmir/jesse:latest bash -c "cd /home && jesse run"

Start Dev MCP Server

./scripts/start-dev-server.sh # Start on port 8100 ./scripts/stop-dev-server.sh # Stop server

Add to OpenCode

Add to ~/.config/opencode/opencode.json:

{ "mcp": { "jesse-mcp-dev": { "type": "remote", "url": "http://localhost:8100/mcp", "enabled": true } } }

Documentation

API Reference

Jesse REST Client

The jesse_rest_client.py module provides direct access to Jesse's REST API:

from jesse_mcp.core.jesse_rest_client import get_jesse_rest_client client = get_jesse_rest_client() # Run backtest result = client.backtest( strategy="OctopusStrategy", symbol="BTC-USDT", timeframe="1h", start_date="2024-01-01", end_date="2024-01-31" )

Mock Implementations

When Jesse is unavailable, all tools gracefully fall back to mock implementations that return realistic synthetic data. This enables development and testing without a full Jesse installation.

Key Dependencies

Package

Version

Purpose

fastmcp

>=0.3.0

MCP server framework

numpy

>=1.24.0

Numerical computations

pandas

>=2.0.0

Data manipulation

scipy

>=1.10.0

Statistical functions

scikit-learn

>=1.3.0

ML utilities

optuna

>=3.0.0

Hyperparameter optimization

Project Structure

jesse_mcp/ ├── server.py # FastMCP server with 17 core tools ├── optimizer.py # Phase 3: Optimization tools ├── risk_analyzer.py # Phase 4: Risk analysis tools ├── pairs_analyzer.py # Phase 5: Pairs trading tools ├── agent_tools.py # 15 agent-specific tools ├── core/ │ ├── integrations.py # Jesse framework integration │ ├── jesse_rest_client.py # REST API client │ └── mock.py # Mock implementations ├── agents/ │ ├── base.py # Base agent class │ ├── backtester.py # Backtesting specialist │ └── risk_manager.py # Risk management specialist └── scripts/ ├── start-dev-server.sh └── stop-dev-server.sh

License

MIT

-
security - not tested
F
license - not found
-
quality - not tested

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/bkuri/jesse-mcp'

If you have feedback or need assistance with the MCP directory API, please join our Discord server