Skip to main content
Glama
bitgeese

Sequential Questioning MCP Server

by bitgeese
fine_tunes.py1.54 kB
from __future__ import annotations import sys from typing import TYPE_CHECKING from argparse import ArgumentParser from .._models import BaseModel from ...lib._validators import ( get_validators, write_out_file, read_any_format, apply_validators, apply_necessary_remediation, ) if TYPE_CHECKING: from argparse import _SubParsersAction def register(subparser: _SubParsersAction[ArgumentParser]) -> None: sub = subparser.add_parser("fine_tunes.prepare_data") sub.add_argument( "-f", "--file", required=True, help="JSONL, JSON, CSV, TSV, TXT or XLSX file containing prompt-completion examples to be analyzed." "This should be the local file path.", ) sub.add_argument( "-q", "--quiet", required=False, action="store_true", help="Auto accepts all suggestions, without asking for user input. To be used within scripts.", ) sub.set_defaults(func=prepare_data, args_model=PrepareDataArgs) class PrepareDataArgs(BaseModel): file: str quiet: bool def prepare_data(args: PrepareDataArgs) -> None: sys.stdout.write("Analyzing...\n") fname = args.file auto_accept = args.quiet df, remediation = read_any_format(fname) apply_necessary_remediation(None, remediation) validators = get_validators() assert df is not None apply_validators( df, fname, remediation, validators, auto_accept, write_out_file_func=write_out_file, )

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/bitgeese/sequential-questioning'

If you have feedback or need assistance with the MCP directory API, please join our Discord server