Skip to main content
Glama
bitgeese

Sequential Questioning MCP Server

by bitgeese
conversation.py1.26 kB
from pydantic import BaseModel, Field from typing import Optional, List, ClassVar, Type from datetime import datetime from uuid import uuid4 from app.schemas.message import MessageResponse class ConversationBase(BaseModel): """Base schema for conversation with common attributes.""" topic: Optional[str] = None is_active: bool = True class ConversationCreate(ConversationBase): """Schema for creating a new conversation.""" user_session_id: str class ConversationUpdate(ConversationBase): """Schema for updating an existing conversation.""" topic: Optional[str] = None is_active: Optional[bool] = None class ConversationInDB(ConversationBase): """Schema for conversation data as stored in the database.""" id: str = Field(default_factory=lambda: str(uuid4())) user_session_id: str created_at: datetime updated_at: datetime class Config: from_attributes = True class ConversationResponse(ConversationInDB): """Schema for conversation data returned in API responses.""" pass class ConversationWithMessages(ConversationResponse): """Schema for conversation with related messages.""" messages: List[MessageResponse] = [] MessageResponse: ClassVar[Type] = MessageResponse

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/bitgeese/sequential-questioning'

If you have feedback or need assistance with the MCP directory API, please join our Discord server