Skip to main content
Glama

BigBugAI MCP Server

by bigbugAi

BigBugAI MCP (Python + FastMCP)

CI License: MIT

Production-ready MCP server exposing BigBugAI tools with stdio transport for local MCP clients (Claude Desktop, Cursor) and optional HTTP/SSE transport (FastAPI + uvicorn) for remote access.

  • Auth via API key (env var)

  • Per-key rate limiting (moving window; configurable via env)

  • Typed Pydantic schemas for tool I/O

  • Clean error handling and JSON-stable outputs

  • Tests, ruff, and mypy configuration

Tools

  • get_trending_tokens(limit: int = 10) -> list[dict]

    • GET ${BTUNIFIED_API}/api/tokens/newly-ingested by default

    • Falls back to ${BTUNIFIED_API}/v1/trending/tokens and a few other candidates if 404

    • Override primary path with BTUNIFIED_TRENDING_PATH

    • Normalizes {items: [...]} -> [...]

  • token_analysis_by_contract(chain: str, address: str) -> dict

    • GET ${BTUNIFIED_API}/api/token-intel/{chain}/{address}/report

Requirements

  • Python 3.11+

  • Packages: mcp[cli], httpx, pydantic, fastapi, uvicorn, limits, pytest, ruff, mypy

Environment variables

  • BIGBUGAI_MCP_API_KEY (required)

  • BIGBUGAI_API_KEY / BIGBUGAI_API_TOKEN (optional; used for upstream HTTP calls if set. If not set, HTTP calls will fall back to BIGBUGAI_MCP_API_KEY.)

  • BTUNIFIED_API (default: https://api.bigbug.ai)

  • MCP_RATE_LIMIT (default: 60/hour, rate string per limits)

Install

Using uv (recommended):

  • Unix/macOS

uv venv source .venv/bin/activate uv pip install -e .[dev]
  • Windows PowerShell

uv venv .venv\Scripts\Activate.ps1 uv pip install -e .[dev]

Alternatively, you can explicitly add packages (will update pyproject as needed):

uv add "mcp[cli]" httpx pydantic fastapi uvicorn limits pytest ruff mypy

Run (STDIO)

export BIGBUGAI_MCP_API_KEY="your-secret" export BTUNIFIED_API="https://api.bigbug.ai" uv run -m bigbugai_mcp.server_stdio

Windows PowerShell:

$env:BIGBUGAI_MCP_API_KEY="your-secret" $env:BTUNIFIED_API="https://api.bigbug.ai" uv run -m bigbugai_mcp.server_stdio

This mode is intended for local MCP clients (e.g., Claude Desktop, Cursor).

Note: Tools no longer require api_key in the payload. The server reads the API key from the environment (BIGBUGAI_MCP_API_KEY) and applies rate limiting based on it.

Claude Desktop config

Create claude_desktop_config.json:

{ "mcpServers": { "bigbugai": { "command": "uv", "args": ["-m", "bigbugai_mcp.server_stdio"], "env": { "BIGBUGAI_MCP_API_KEY": "your-secret", "BTUNIFIED_API": "https://api.bigbug.ai", "MCP_RATE_LIMIT": "60/hour" } } } }

Run (HTTP)

uv run -m bigbugai_mcp.server_http # server on :8000 curl -s http://localhost:8000/healthz

Expected output:

ok

MCP HTTP/SSE endpoints are mounted under /mcp. Depending on your FastMCP version, an SSE stream may be available at /mcp/sse.

Example cURL (SSE; may require -N to keep the connection open and is primarily for debugging):

curl -N http://localhost:8000/mcp/sse

Note: MCP over HTTP/SSE is designed for compatible clients; manual cURL interaction is limited.

Smoke scripts

Quick sanity checks for the tools (require an API key in env):

  • Trending

    # uses BIGBUGAI_API_KEY/BIGBUGAI_API_TOKEN/BIGBUGAI_MCP_API_KEY from env uv run python scripts/smoke_trending.py -l 5
  • Token analysis

    # requires BIGBUGAI_MCP_API_KEY in env; optionally set BB_CHAIN/BB_ADDRESS $env:BIGBUGAI_MCP_API_KEY="your-secret" # PowerShell uv run python scripts/smoke_token_analysis.py

Testing and Quality

# Run unit tests uv run pytest -q # Lint uv run ruff check . # Type check uv run mypy src

Project layout

bigbugai-mcp/ .github/workflows/ci.yml CODE_OF_CONDUCT.md CONTRIBUTING.md LICENSE README.md SECURITY.md pyproject.toml scripts/list_tools.py scripts/smoke_token_analysis.py scripts/smoke_trending.py src/bigbugai_mcp/__init__.py src/bigbugai_mcp/auth.py src/bigbugai_mcp/models.py src/bigbugai_mcp/server_http.py src/bigbugai_mcp/server_stdio.py src/bigbugai_mcp/tools.py tests/test_tools.py

Security

  • Rotate API keys regularly

  • Keep HTTP mode behind OAuth/reverse proxy if exposed publicly

  • Rate limits are per API key in a moving window strategy

See SECURITY.md for reporting vulnerabilities.

Extending

Add more tools for BigBugAI endpoints (portfolio manager, investment suggester, etc.).

  • Add new Pydantic request/response models in src/bigbugai_mcp/models.py

  • Add the tool function in src/bigbugai_mcp/tools.py

  • Decorate with @guarded and register in register_tools()

  • Write tests in tests/

Contributing

Please see CONTRIBUTING.md for guidelines.

Code of Conduct

This project follows the Contributor Covenant.

License

MIT — see LICENSE.

-
security - not tested
A
license - permissive license
-
quality - not tested

hybrid server

The server is able to function both locally and remotely, depending on the configuration or use case.

Enables access to BigBugAI cryptocurrency tools for getting trending tokens and performing token analysis by contract address. Provides production-ready API access with rate limiting and authentication for crypto market intelligence.

  1. Tools
    1. Requirements
      1. Environment variables
        1. Install
          1. Run (STDIO)
            1. Claude Desktop config
              1. Run (HTTP)
                1. Smoke scripts
                  1. Testing and Quality
                    1. Project layout
                      1. Security
                        1. Extending
                          1. Contributing
                            1. Code of Conduct
                              1. License

                                MCP directory API

                                We provide all the information about MCP servers via our MCP API.

                                curl -X GET 'https://glama.ai/api/mcp/v1/servers/bigbugAi/bigbugai-mcp'

                                If you have feedback or need assistance with the MCP directory API, please join our Discord server