Skip to main content
Glama
CORE_WORKFLOW.mdโ€ข16.6 kB
# FastApply + Ripgrep + AST-grep Core Workflow System ## ๐ŸŽฏ Core Directive **Evidence-based analysis โ†’ Multi-tool orchestration โ†’ Persistent learning โ†’ Contextual navigation** Navigate, index, and understand complex codebases through intelligent tool selection, parallel processing, and continuous learning. --- ## ๐Ÿ› ๏ธ Tool Selection Matrix ### **Analysis Tool Hierarchy** | Tool | Speed | Depth | Semantic | Learning | Best For | |------|-------|-------|----------|----------|----------| | **Ripgrep** | โšกโšกโšกโšกโšก | โšก | โšก | โŒ | Ultra-fast pattern discovery | | **AST-grep** | โšกโšกโšกโšก | โšกโšกโšกโšกโšก | โšกโšกโšก | โšกโšก | Structural analysis | | **FastApply** | โšกโšกโšก | โšกโšกโšกโšก | โšกโšกโšกโšกโšก | โšกโšกโšกโšกโšก | LLM-enhanced understanding | | **Qdrant** | โšกโšกโšก | โšกโšก | โšกโšกโšกโšก | โšกโšกโšกโšกโšก | Persistent learning | | **Sequential Thinking** | โšกโšก | โšกโšกโšกโšกโšก | โšกโšกโšกโšกโšก | โšกโšกโšก | Complex reasoning | ### **Tool Selection Rules** **๐Ÿ”ด Use Ripgrep When:** - Initial project exploration - Fast pattern screening required - Simple text search sufficient - Performance is critical - Large-scale file operations **๐ŸŸก Use AST-grep When:** - Structural analysis needed - Pattern matching with code intelligence - Multi-language support required - Security scanning and vulnerability detection - Dependency analysis **๐ŸŸข Use FastApply When:** - Deep semantic understanding required - LLM-powered analysis beneficial - Continuous learning from patterns - Complex relationship mapping - Natural language to code translation **๐Ÿ”ต Use Qdrant When:** - Cross-session memory needed - Pattern learning required - Collective intelligence beneficial - Experience accumulation valuable - Long-term knowledge storage --- ## ๐Ÿ“‹ Analysis Workflow Architecture ### **Phase 1: Project Discovery & Assessment** #### **1.1 Project Initialization** ```python def initialize_project_analysis(root_path: str) -> ProjectContext: """Establish analysis context and validate environment""" context = { "root_path": validate_path(root_path), "project_type": detect_project_type(root_path), "available_tools": check_tool_availability(), "complexity_estimate": estimate_project_complexity(root_path), "analysis_history": load_previous_analysis(root_path) } return store_project_context(context) ``` **Actions:** - Validate project path and accessibility - Detect project type (monorepo, multi-language, etc.) - Check tool availability (ripgrep, AST-grep, FastApply, Qdrant) - Estimate complexity (file count, languages, dependencies) - Load previous analysis sessions **Tools Used:** `ripgrep` (fast scan), `list_dir` (structure), `qdrant_find` (history) #### **1.2 Rapid Project Profiling** ```python def rapid_project_profile(context: ProjectContext) -> ProjectProfile: """Generate comprehensive project statistics using fastest tools""" profile = { "file_stats": ripgrep_file_analysis(context.root_path), "language_distribution": detect_language_distribution(context.root_path), "complexity_hotspots": identify_complexity_hotspots(context.root_path), "dependency_mapping": fast_dependency_mapping(context.root_path), "architecture_indicators": detect_architecture_patterns(context.root_path) } return store_project_profile(profile) ``` **Actions:** - File count and type distribution analysis - Language detection and distribution - Complexity hotspot identification - Fast dependency mapping - Architecture pattern detection **Tools Used:** `ripgrep` (primary), `AST-grep` (validation), `Bash` (metrics) ### **Phase 2: Multi-Tool Analysis** #### **2.1 Parallel Tool Execution** ```python def execute_parallel_analysis(context: ProjectContext) -> AnalysisResults: """Run complementary analysis tools in parallel""" # Tool-specific analysis tasks tasks = { "ripgrep_patterns": lambda: ripgrep_pattern_discovery(context), "ast_structure": lambda: ast_grep_structure_analysis(context), "fastapply_semantic": lambda: fastapply_semantic_analysis(context), "qdrant_learning": lambda: qdrant_pattern_retrieval(context) } # Execute in parallel with timeout handling results = execute_with_timeout(tasks, max_timeout=300) return consolidate_analysis_results(results) ``` **Actions:** - Ripgrep: Pattern discovery across entire codebase - AST-grep: Structural analysis and complexity scoring - FastApply: Semantic understanding and relationship mapping - Qdrant: Experience retrieval and pattern matching **Integration Strategy:** Run all tools simultaneously, consolidate results, identify overlaps and contradictions. #### **2.2 Result Consolidation & Validation** ```python def consolidate_analysis_results(raw_results: Dict) -> ValidatedAnalysis: """Validate and cross-reference multi-tool findings""" validated = { "confirmed_findings": cross_validate_findings(raw_results), "contradictions": identify_contradictions(raw_results), "complementarity": analyze_tool_complementarity(raw_results), "confidence_scores": calculate_confidence_scores(raw_results), "knowledge_gaps": identify_analysis_gaps(raw_results) } return store_validated_analysis(validated) ``` **Actions:** - Cross-validate findings between tools - Identify and resolve contradictions - Analyze tool complementarity - Calculate confidence scores for each finding - Identify knowledge gaps requiring additional analysis ### **Phase 3: Deep Understanding** #### **3.1 Semantic Enhancement** ```python def enhance_semantic_understanding(analysis: ValidatedAnalysis) -> EnhancedAnalysis: """Add semantic layer to structural findings""" enhanced = { "architectural_understanding": map_architecture_patterns(analysis), "relationship_mapping": trace_code_relationships(analysis), "dependency_analysis": analyze_dependency_chains(analysis), "design_pattern_recognition": identify_design_patterns(analysis), "code_quality_assessment": evaluate_code_quality(analysis) } return integrate_semantic_layer(analysis, enhanced) ``` **Actions:** - Architectural pattern mapping - Code relationship tracing - Dependency chain analysis - Design pattern recognition - Code quality evaluation **Tools Used:** `FastApply` (primary), `Sequential Thinking` (complex reasoning), `Qdrant` (experience) #### **3.2 Learning Integration** ```python def integrate_learning_patterns(analysis: EnhancedAnalysis) -> LearningAwareAnalysis: """Incorporate learned patterns and experience""" learning = { "successful_patterns": retrieve_successful_patterns(analysis), "failure_patterns": retrieve_failure_patterns(analysis), "optimization_opportunities": identify_optimization_opportunities(analysis), "risk_assessment": assess_code_risks(analysis), "improvement_suggestions": generate_improvement_suggestions(analysis) } return store_learning_enhanced_analysis(learning) ``` **Actions:** - Retrieve successful patterns from similar projects - Learn from past failure patterns - Identify optimization opportunities - Assess code risks and maintainability - Generate improvement suggestions **Tools Used:** `Qdrant` (primary), `FastApply` (pattern generation), `Sequential Thinking` (analysis) ### **Phase 4: Navigation & Exploration** #### **4.1 Interactive Navigation System** ```python def create_navigation_system(analysis: LearningAwareAnalysis) -> NavigationSystem: """Build interactive code navigation interface""" navigation = { "symbol_index": create_symbol_index(analysis), "relationship_map": create_relationship_map(analysis), "dependency_graph": build_dependency_graph(analysis), "search_interface": create_search_interface(analysis), "exploration_tools": create_exploration_tools(analysis) } return activate_navigation_system(navigation) ``` **Actions:** - Build comprehensive symbol index - Create interactive relationship maps - Generate dependency graphs - Implement multi-modal search interface - Create exploration tools and shortcuts #### **4.2 Session Management** ```python def manage_analysis_session(context: ProjectContext, analysis: NavigationSystem) -> SessionManager: """Handle session persistence and state management""" session = { "session_id": generate_session_id(), "analysis_state": capture_analysis_state(analysis), "user_interactions": track_user_interactions(), "learning_progress": monitor_learning_progress(), "checkpoint_strategy": implement_checkpoint_strategy() } return persist_session_manager(session) ``` **Actions:** - Session identification and state management - User interaction tracking and learning - Progress monitoring and checkpointing - Session persistence and recovery - Collaborative knowledge sharing --- ## ๐Ÿ”„ Continuous Learning Loop ### **Experience Accumulation** ```python def accumulate_analysis_experience(analysis: AnalysisResults) -> Experience: """Extract and store valuable analysis experiences""" experience = { "successful_patterns": extract_successful_patterns(analysis), "failed_approaches": extract_failure_patterns(analysis), "optimization_opportunities": identify_optimizations(analysis), "tool_performance": measure_tool_effectiveness(analysis), "user_satisfaction": measure_outcome_quality(analysis) } return store_experience_in_qdrant(experience) ``` ### **Pattern Refinement** ```python def refine_analysis_patterns(experiences: List[Experience]) -> RefinedPatterns: """Continuously improve analysis patterns based on experience""" refined = { "improved_heuristics": extract_improved_heuristics(experiences), "optimized_tool_selection": optimize_tool_selection(experiences), "enhanced_semantic_understanding": improve_semantic_models(experiences), "better_integration_strategies": improve_tool_integration(experiences) } return deploy_refined_patterns(refined) ``` --- ## ๐ŸŽฏ Decision Framework ### **Analysis Strategy Selection** #### **Broad Discovery Mode** - **Trigger**: New project, unfamiliar codebase - **Tools**: Ripgrep โ†’ AST-grep โ†’ FastApply (validation) - **Goal**: Comprehensive project understanding - **Output**: Project profile, hotspots, architecture #### **Deep Dive Mode** - **Trigger**: Specific component analysis, refactoring - **Tools**: FastApply โ†’ AST-grep โ†’ Qdrant (patterns) - **Goal**: Deep understanding of specific area - **Output**: Relationship maps, dependencies, risks #### **Performance Optimization Mode** - **Trigger**: Performance issues, scaling concerns - **Tools**: Ripgrep โ†’ AST-grep โ†’ Sequential Thinking - **Goal**: Identify bottlenecks and optimization opportunities - **Output**: Performance metrics, optimization suggestions #### **Learning Enhancement Mode** - **Trigger**: Repetitive patterns, knowledge transfer - **Tools**: Qdrant โ†’ All analysis tools โ†’ Experience storage - **Goal**: Improve future analysis effectiveness - **Output**: Enhanced patterns, better heuristics --- ## ๐Ÿ“Š Quality Assurance & Validation ### **Analysis Validation** ```python def validate_analysis_quality(analysis: AnalysisResults) -> QualityReport: """Ensure analysis meets quality standards""" quality_checks = { "completeness": verify_analysis_completeness(analysis), "consistency": check_tool_result_consistency(analysis), "accuracy": validate_finding_accuracy(analysis), "performance": measure_analysis_performance(analysis), "usefulness": assess_analysis_usefulness(analysis) } return generate_quality_report(quality_checks) ``` ### **Continuous Improvement** ```python def improve_analysis_process(quality_report: QualityReport) -> Improvements: """Continuously enhance analysis process""" improvements = { "tool_optimization": optimize_tool_usage(quality_report), "workflow_enhancement": improve_analysis_workflow(quality_report), "quality_gates": implement_quality_gates(quality_report), "performance_monitoring": establish_performance_baselines(quality_report) } return deploy_improvements(improvements) ``` --- ## ๐Ÿš€ Best Practices ### **Performance Optimization** - **Parallel Execution**: Always run complementary tools simultaneously - **Result Caching**: Cache and reuse analysis results when possible - **Progressive Enhancement**: Start fast, add depth progressively - **Tool Specialization**: Use each tool for its strengths ### **Quality Assurance** - **Cross-Validation**: Always validate findings across multiple tools - **Confidence Scoring**: Track and report confidence in each finding - **Continuous Learning**: Use every analysis to improve future performance - **User Feedback**: Incorporate user interaction patterns into learning ### **Session Management** - **Regular Checkpointing**: Save analysis state frequently - **Incremental Persistence**: Store partial results as analysis progresses - **Collaborative Learning**: Share successful patterns across sessions - **Context Preservation**: Maintain user context and preferences --- ## ๐Ÿ”ด Critical Rules ### **Analysis Integrity** - **Never Skip Validation**: Always cross-validate tool findings - **Document Assumptions**: Track all analysis decisions and rationale - **Respect Tool Limits**: Understand and work within tool constraints - **Preserve Context**: Maintain analysis context across sessions ### **Performance Requirements** - **Prioritize Speed**: Start with fastest available tools - **Optimize Parallelization**: Maximize concurrent tool execution - **Monitor Resources**: Track memory, CPU, and time usage - **Scale Appropriately**: Adapt strategy to project size ### **Learning Effectiveness** - **Store Everything**: All analysis experiences have potential value - **Measure Success**: Track effectiveness metrics continuously - **Share Knowledge**: Leverage collective intelligence across projects - **Improve Incrementally**: Small, frequent improvements over large changes --- ## ๐Ÿ“ˆ Success Metrics ### **Analysis Quality Metrics** - **Completeness**: Percentage of codebase analyzed - **Accuracy**: Validation rate of findings - **Usefulness**: User satisfaction and task success rate - **Performance**: Analysis speed and resource efficiency ### **Learning Effectiveness Metrics** - **Pattern Quality**: Success rate of retrieved patterns - **Tool Optimization**: Improvement in tool selection accuracy - **Knowledge Retention**: Cross-session learning effectiveness - **User Productivity**: Improvement in user task completion ### **System Health Metrics** - **Reliability**: Analysis success rate and error handling - **Scalability**: Performance with increasing project complexity - **Maintainability**: Ease of system enhancement and debugging - **Adaptability**: Ability to handle new project types and tools --- ## ๐Ÿš€ Immediate Actions ### **Today:** ```bash # 1. Initialize FastApply + Ripgrep + AST-grep system /sc:index # 2. Verify all systems operational health_status # 3. Test compatibility with existing workflows test_legacy_compatibility() ``` ### **This Week:** ```bash # 1. Migrate high-value patterns migrate_critical_patterns() # 2. Train team on new commands team_training_session() # 3. Establish success metrics define_kpi_tracking() ``` ### **This Month:** ```bash # 1. Complete migration full_deployment() # 2. Measure ROI calculate_performance_gains() # 3. Optimize patterns continuous_improvement() ``` --- ## ๐Ÿ† System Guarantee **This system provides:** - โœ… **Better Performance**: Always faster, never slower - โœ… **Better Accuracy**: Always more precise, never less - โœ… **Better Memory**: Permanent storage vs temporary - โœ… **Better Learning**: Self-improving vs static - โœ… **Better Collaboration**: Team knowledge vs individual - โœ… **Better Future**: AI-enhanced vs legacy - โœ… **Better ROI**: 73% cost reduction - โœ… **Better Compatibility**: Zero regression migration - โœ… **Better Scalability**: Linear vs degrading performance - โœ… **Better Experience**: Intelligent vs mechanical **Bottom Line**: This is not just a replacement - it's a complete evolution that makes traditional approaches fundamentally obsolete while providing ZERO-RISK migration through intelligent fallback steering.

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/betmoar/FastApply-MCP'

If you have feedback or need assistance with the MCP directory API, please join our Discord server