Skip to main content
Glama

brain-trust

by bernierllc

Ask MCP - Hosted OpenAI MCP Server (v0.3.0)

🧠 Connect your IDE to OpenAI for intelligent question answering and structured plan reviews.

A hosted FastMCP server with 3 simple tools that connect your IDE directly to OpenAI. No local installation needed.

🌐 - Try it instantly in your browser with setup guides for 8+ IDEs!


πŸŽ‰ What's New in v0.1.2

  • ⭐ DEEP_DIVE Review Level - Technical FMEA-style analysis for implementation planning

  • πŸ“Š Master Review Framework - 10-point structured evaluation across all review levels

  • πŸ” Comprehensive Logging - Full request/response tracing with environment-aware API key masking

  • βœ… Professional Test Suite - 18 pytest tests with 92% code coverage

  • 🎨 Pre-commit Hooks - Automated code quality with black, isort, flake8, mypy

  • 🐳 Enhanced Docker Config - Environment variable passthrough for easier configuration

  • πŸ“– Complete Documentation - Logging guide, testing guide, header configuration examples

See Release Notes v0.1.2 for full details.


🎯 What is brain-trust?

brain-trust is a Model Context Protocol (MCP) server that gives your AI agents direct access to OpenAI for:

  • Asking questions with optional context

  • Reviewing planning documents with multiple analysis depths

  • Getting expert answers tailored to your specific situation

Think of it as phoning a friend (OpenAI) when you need help!


✨ The 3 Simple Tools

1. πŸ“ž phone_a_friend

Ask OpenAI any question, with optional context for better answers.

# Simple question phone_a_friend("What is Docker?") # Context-aware question phone_a_friend( question="Should we use microservices?", context="Team of 5 engineers, launching MVP in 3 months" )

2. πŸ“‹ review_plan

Get AI-powered feedback on planning documents using the Master Review Framework - a structured 10-point evaluation system.

Master Review Framework Dimensions:

  • Structure & Organization

  • Completeness

  • Clarity

  • Assumptions & Dependencies

  • Risks

  • Feasibility

  • Alternatives

  • Validation

  • Stakeholders

  • Long-term Sustainability

Review Levels (Progressive Depth):

  • quick - Basic checklist (1-2 suggestions)

  • standard - Standard analysis (2-3 questions)

  • comprehensive - Detailed coverage (3-5 questions)

  • deep_dive - NEW! Technical FMEA-style analysis (4-6 questions)

  • expert - Professional enterprise-level review (5-7 strategic questions)

# Deep technical review review_plan( plan_content="# Q4 2025 Roadmap\n...", review_level="deep_dive", # NEW technical level context="Startup with $500K budget, need to launch in 6 months", focus_areas=["scalability", "risks", "timeline"] ) # Expert enterprise review review_plan( plan_content="# Migration Plan\n...", review_level="expert", context="Fortune 500 company, 1M+ users" )

Returns:

  • Overall score (0.0-1.0)

  • Strengths (list)

  • Weaknesses (list)

  • Suggestions (list)

  • Detailed feedback (structured analysis)

  • Review level used

  • Timestamp

3. ❀️ health_check

Check server status and configuration.

health_check() # Returns: {status, timestamp, plan_reviews_count}

πŸš€ Quick Start

Prerequisites

  • Python 3.12+

  • OpenAI API key

  • Docker (optional, but recommended)

Option 1: Docker (Recommended)

# Clone the repository git clone <repository-url> cd mcp-ask-questions # Start the server (no API key needed) docker-compose up -d # Check logs docker-compose logs -f

The server starts immediately without requiring an OpenAI API key. Configure the API key in your MCP client (see below).

Option 2: Local Python

# Install dependencies pip install -r requirements.txt # Run the server python server.py

πŸ”§ Configure in Cursor

Quick Install Button

Click the button to install:

Or install manually:

Go to Cursor Settings -> MCP -> Add new MCP Server. Name it "brain-trust", use HTTP transport:

  • URL: http://localhost:8000/mcp

  • Transport: http

  • Environment Variables: Add OPENAI_API_KEY with your OpenAI API key

Add to ~/.cursor/mcp.json

{ "mcpServers": { "brain-trust": { "url": "http://localhost:8000/mcp", "transport": "http", "env": { "OPENAI_API_KEY": "your_openai_api_key_here" } } } }

How it works:

  • The OPENAI_API_KEY from the MCP client configuration is set as an environment variable for the server

  • The server reads the API key from the environment and uses it to authenticate with OpenAI

  • Optional: You can override the model and max_tokens per tool call

Important: Make sure Docker is running and the server is started before using in Cursor!


πŸ’‘ Usage Examples

Example 1: Quick Question

Ask OpenAI directly:

Use phone_a_friend to ask: "What are Python best practices?"

Example 2: Context-Aware Question

Get answers specific to your situation:

Use phone_a_friend with the question "How should we structure our tests?" and context "We use FastAPI with pytest, SQLAlchemy, and Docker"

Example 3: Plan Review

Get feedback on a planning document:

Use review_plan to review the file plans/compare-options-tool.md with review_level "standard"

Example 4: Comprehensive Plan Analysis

Get deep analysis with specific focus:

Use review_plan on plans/compare-options-tool.md with review_level "expert", context "Team of 2 engineers, need to build quickly", and focus_areas ["timeline", "implementation", "risks"]

πŸ—οΈ Architecture

β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β” β”‚ Cursor / AI β”‚ β”‚ Agent β”‚ β””β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”˜ β”‚ MCP Protocol (HTTP) β”‚ β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β–Όβ”€β”€β”€β”€β”€β”€β”€β”€β” β”‚ brain-trust β”‚ β”‚ MCP Server β”‚ β”‚ (FastMCP) β”‚ β””β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”˜ β”‚ OpenAI API β”‚ β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β–Όβ”€β”€β”€β”€β”€β”€β”€β”€β” β”‚ OpenAI β”‚ β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜

Flow:

  1. Agent calls MCP tool with API key from MCP client config

  2. brain-trust server receives request with API key via HTTP

  3. Server creates OpenAI client with provided API key

  4. Server formats prompt and calls OpenAI API

  5. OpenAI returns AI-generated response

  6. Server returns structured response to agent


🐳 Docker Setup

The server runs in Docker with:

  • FastMCP Server: Python 3.12, running on port 8000

  • Nginx: Reverse proxy for HTTP requests

  • Health Checks: Every 30 seconds

  • Non-root User: Security best practice

# Start services docker-compose up -d # View logs docker-compose logs -f # Check status curl http://localhost:8000/health # Stop services docker-compose down

πŸ› οΈ Configuration

Environment Variables

The server supports environment-based configuration. Create a .env file:

# Server Configuration ENVIRONMENT=development # development or production LOG_LEVEL=DEBUG # DEBUG, INFO, WARNING, ERROR, CRITICAL PORT=8000 # Default: 8000 # Optional: For development/testing only OPENAI_API_KEY=sk-... # Only needed for local testing

Logging Modes:

Development (DEBUG):

  • Full API keys visible in logs (for debugging)

  • All request/response details logged

  • Complete header information

Production (INFO):

  • API keys masked (first 8 + last 4 chars only)

  • Essential information only

  • Reduced sensitive data logging

See docs/LOGGING.md for comprehensive logging documentation.

Note: OpenAI API key is NOT required as an environment variable for production. The API key is passed directly from the MCP client with each tool call.

MCP Client Configuration (Required)

Configure your OpenAI API key in the MCP client settings (e.g., Cursor's ~/.cursor/mcp.json):

{ "mcpServers": { "brain-trust": { "url": "http://localhost:8000/mcp", "transport": "http", "env": { "OPENAI_API_KEY": "your_actual_api_key_here" } } } }

How it works:

  1. You configure the API key in your MCP client

  2. The MCP client automatically passes the key to tool calls

  3. The server uses the key to authenticate with OpenAI per-request

  4. No API key storage on the server side

Benefits:

  • βœ… No API keys in Docker containers or environment files

  • βœ… Secure key management via MCP client

  • βœ… Different clients can use different API keys

  • βœ… Per-request authentication


πŸ“Š API Endpoints

When running locally:

  • MCP Endpoint: http://localhost:8000/mcp

  • Health Check: http://localhost:8000/health

Test the health endpoint:

curl http://localhost:8000/health # Returns: {"status":"healthy","timestamp":"...","plan_reviews_count":0}

πŸ§ͺ Testing

Quick Test

Test that the server is working:

# Check health curl http://localhost:8000/health # In Cursor, try: # "Use phone_a_friend to ask: What is FastMCP?"

Test Suite

Run the comprehensive pytest test suite:

# Run all tests (18 tests, ~95 seconds) pytest tests/ # Run with coverage report (92% coverage) pytest --cov=server --cov-report=term-missing tests/ # Run only unit tests (fast, no API calls) pytest tests/test_logging.py # Run only integration tests (real OpenAI API calls) pytest tests/test_tools.py # Run specific test pytest tests/test_tools.py::TestPhoneAFriend::test_phone_a_friend_basic -v

Test Coverage:

  • βœ… 18 tests total

  • βœ… 8 unit tests (logging, utilities)

  • βœ… 10 integration tests (real OpenAI API calls)

  • βœ… 92% code coverage

  • βœ… All MCP tools tested

  • βœ… All 5 review levels tested

Requirements:

  • Tests require OPENAI_API_KEY in .env file for integration tests

  • Unit tests run without API key

  • Tests automatically skip if API key not available

See tests/README.md for complete testing documentation.


πŸ“ Project Structure

mcp-ask-questions/ β”œβ”€β”€ server.py # Main MCP server with 3 tools β”œβ”€β”€ Dockerfile # Container definition β”œβ”€β”€ docker-compose.yml # Multi-container orchestration β”œβ”€β”€ nginx.conf # Reverse proxy config β”œβ”€β”€ requirements.txt # Python dependencies β”œβ”€β”€ pyproject.toml # Project configuration (black, isort, mypy) β”œβ”€β”€ fastmcp.json # FastMCP deployment config β”œβ”€β”€ .env.example # Environment variables template β”œβ”€β”€ README.md # This file β”œβ”€β”€ docs/ # Documentation β”‚ β”œβ”€β”€ LOGGING.md # Comprehensive logging guide β”‚ β”œβ”€β”€ HEADER_IMPLEMENTATION.md # Header-based config guide β”‚ └── MCP_CLIENT_HEADERS.md # Client configuration guide β”œβ”€β”€ tests/ # Pytest test suite (92% coverage) β”‚ β”œβ”€β”€ conftest.py # Shared fixtures β”‚ β”œβ”€β”€ test_tools.py # Tool tests (10 tests) β”‚ β”œβ”€β”€ test_logging.py # Logging tests (8 tests) β”‚ └── README.md # Testing documentation β”œβ”€β”€ release_notes/ # Release notes β”‚ β”œβ”€β”€ RELEASE_NOTES_v0.1.2.md β”‚ └── RELEASE_NOTES_v0.1.1.md β”œβ”€β”€ examples/ # Example implementations β”‚ └── server_with_headers.py # Header-based config example └── plans/ # Planning documents β”œβ”€β”€ contextual-qa-mcp-server.md β”œβ”€β”€ technical-implementation.md β”œβ”€β”€ quick-start-guide.md └── compare-options-tool.md

πŸ”’ Security

  • βœ… No API keys in Docker - API keys are passed per-request from MCP client

  • βœ… No environment file secrets - No .env file with API keys required

  • βœ… Per-request authentication - Each request uses client-provided credentials

  • βœ… Non-root Docker user - Runs as mcpuser in container

  • βœ… Input validation - Pydantic models validate all inputs

  • βœ… Error handling - Comprehensive error handling and logging

  • βœ… Client-side key management - Keys managed securely by MCP client


πŸ› Troubleshooting

Server won't start

# Check if port 8000 is in use lsof -i:8000 # View Docker logs docker-compose logs -f

Cursor can't connect

  1. Verify server is running: curl http://localhost:8000/health

  2. Check MCP config in ~/.cursor/mcp.json

  3. Restart Cursor after config changes

  4. Ensure OPENAI_API_KEY is set in MCP client config

OpenAI API errors

  1. Verify API key is correct and active in ~/.cursor/mcp.json

  2. Check OpenAI account has credits

  3. Ensure API key has proper permissions

  4. View logs: docker-compose logs -f

"API key required" errors

The API key must be configured in your MCP client (not in Docker):

  1. Open ~/.cursor/mcp.json

  2. Add OPENAI_API_KEY to the env section

  3. Restart Cursor

  4. The API key is automatically passed with each tool call

Tools not showing in Cursor

  1. Restart Docker: docker-compose restart

  2. Restart Cursor completely

  3. Check MCP settings are correct


🚦 Development

Local Development

# Create/activate virtual environment python3 -m venv venv source venv/bin/activate # Auto-activates in VS Code/Cursor workspace # Install dependencies pip install -r requirements.txt # Run server locally python server.py # Server runs on http://localhost:8000

Note: The server starts without requiring an OpenAI API key. The API key is provided by the MCP client when calling tools.

Code Quality

Pre-commit Hooks:

Automated code quality checks run on every commit:

# Pre-commit automatically runs: β†’ black # Code formatting β†’ isort # Import sorting β†’ flake8 # Linting β†’ mypy # Type checking

Commits are blocked if any check fails. The hook is automatically set up in .git/hooks/pre-commit.

Manual Quality Checks:

# Format code black server.py # Sort imports isort server.py # Lint flake8 server.py # Type check mypy server.py # Run all checks black server.py && isort server.py && flake8 server.py && mypy server.py

Making Changes

  1. Create a feature branch

  2. Make your changes to server.py

  3. Run tests: pytest tests/

  4. Pre-commit hooks will run automatically on commit

  5. Rebuild Docker: docker-compose up -d --build

  6. Restart Cursor to pick up changes

Adding New Tools

  1. Create a plan in plans/your-tool-name.md

  2. Implement the tool in server.py with @mcp.tool() decorator

  3. Add tests in tests/test_tools.py

  4. Update documentation

  5. Submit a pull request

See plans/compare-options-tool.md for an example plan.


πŸ“š Documentation

Core Documentation

  • README.md (this file) - Overview and quick start

  • docs/LOGGING.md - Comprehensive logging system guide

  • docs/HEADER_IMPLEMENTATION.md - Header-based configuration guide

  • docs/MCP_CLIENT_HEADERS.md - Client configuration options

  • tests/README.md - Testing documentation and examples

Release Notes

  • release_notes/RELEASE_NOTES_v0.1.2.md - Latest release (current)

  • release_notes/RELEASE_NOTES_v0.1.1.md - Previous release

Examples

  • examples/server_with_headers.py - HTTP header configuration example

Planning Documents

  • plans/ - Detailed planning documents and proposals

    • contextual-qa-mcp-server.md

    • technical-implementation.md

    • quick-start-guide.md

    • compare-options-tool.md


⭐ Features

Master Review Framework

  • 10-point structured evaluation for comprehensive plan analysis

  • 5 progressive review levels from quick to expert

  • FMEA-style failure analysis in deep_dive mode

  • Enterprise-grade reviews with RACI, TCO, SLOs

Comprehensive Logging

  • Full request/response tracing for debugging

  • Environment-aware masking (debug vs production)

  • 5+ log events per request with structured JSON output

  • API key validation at every step

Professional Testing

  • 92% code coverage with 18 pytest tests

  • 10 integration tests with real OpenAI API calls

  • Automatic skipping if API key not available

  • Type-safe with full mypy compliance

Development Tools

  • Pre-commit hooks enforce code quality automatically

  • Auto-activate venv in VS Code/Cursor workspace

  • Docker support for easy deployment

  • HTTP header config support (optional)


🎯 Why brain-trust?

Simple

  • Only 3 tools to learn

  • Direct, straightforward usage

  • No complex context management

  • Clear, comprehensive documentation

Powerful

  • Use your favorite GPT Model

  • Context-aware answers

  • 5 progressive review levels

  • Master Review Framework with 10-point analysis

Practical

  • Solves real problems (questions, plan reviews)

  • Easy to integrate with Cursor

  • Production-ready with Docker

  • 92% test coverage ensures reliability

Extensible

  • Easy to add new tools

  • Clean, maintainable codebase

  • Well-documented for contributions

  • Professional testing infrastructure


🀝 Contributing

We welcome contributions! Here's how to contribute:

Adding a New Tool

  1. Plan: Create a plan in plans/your-tool-name.md

  2. Implement: Add tool to server.py with @mcp.tool() decorator

  3. Test: Add tests in tests/test_tools.py

  4. Document: Update README and add to docs/ if needed

  5. Quality: Pre-commit hooks will run automatically

  6. Submit: Create a pull request

See plans/compare-options-tool.md for an example plan.

Code Standards

  • Python 3.12+ with type hints

  • Black formatting (line length 88)

  • isort for import sorting

  • flake8 for linting

  • mypy for type checking

  • pytest for testing (aim for >80% coverage)

  • Conventional commits for commit messages

Running Tests

# Run all tests pytest tests/ # Run with coverage pytest --cov=server tests/ # Pre-commit hooks run automatically git commit -m "feat: add new tool"

Documentation Standards

  • Add docstrings to all public functions

  • Update README.md for user-facing changes

  • Add examples for new features

  • Keep docs/ up to date

  • Follow existing documentation style


πŸ“„ License

MIT License - see LICENSE file for details


πŸ™ Acknowledgments

Thanks to all contributors who provided feedback on the review framework and logging system!


πŸ“Š Project Stats

  • Tools: 3 (phone_a_friend, review_plan, health_check)

  • Review Levels: 5 (quick, standard, comprehensive, deep_dive, expert)


πŸ”— Links


Questions? Issues? Feedback?

Open an issue or reach out! We're here to help. 🧠✨

-
security - not tested
-
license - not tested
-
quality - not tested

hybrid server

The server is able to function both locally and remotely, depending on the configuration or use case.

Enables AI agents to ask questions and review planning documents by connecting to OpenAI's GPT-4. Provides context-aware question answering and multi-level plan analysis with structured feedback including strengths, weaknesses, and suggestions.

  1. πŸŽ‰ What's New in v0.1.2
    1. 🎯 What is brain-trust?
      1. ✨ The 3 Simple Tools
        1. 1. πŸ“ž phone_a_friend
        2. 2. πŸ“‹ review_plan
        3. 3. ❀️ health_check
      2. πŸš€ Quick Start
        1. Prerequisites
        2. Option 1: Docker (Recommended)
        3. Option 2: Local Python
      3. πŸ”§ Configure in Cursor
        1. Quick Install Button
        2. Add to ~/.cursor/mcp.json
      4. πŸ’‘ Usage Examples
        1. Example 1: Quick Question
        2. Example 2: Context-Aware Question
        3. Example 3: Plan Review
        4. Example 4: Comprehensive Plan Analysis
      5. πŸ—οΈ Architecture
        1. 🐳 Docker Setup
          1. πŸ› οΈ Configuration
            1. Environment Variables
            2. MCP Client Configuration (Required)
          2. πŸ“Š API Endpoints
            1. πŸ§ͺ Testing
              1. Quick Test
              2. Test Suite
            2. πŸ“ Project Structure
              1. πŸ”’ Security
                1. πŸ› Troubleshooting
                  1. Server won't start
                  2. Cursor can't connect
                  3. OpenAI API errors
                  4. "API key required" errors
                  5. Tools not showing in Cursor
                2. 🚦 Development
                  1. Local Development
                  2. Code Quality
                  3. Making Changes
                  4. Adding New Tools
                3. πŸ“š Documentation
                  1. Core Documentation
                  2. Release Notes
                  3. Examples
                  4. Planning Documents
                4. ⭐ Features
                  1. Master Review Framework
                  2. Comprehensive Logging
                  3. Professional Testing
                  4. Development Tools
                5. 🎯 Why brain-trust?
                  1. Simple
                  2. Powerful
                  3. Practical
                  4. Extensible
                6. 🀝 Contributing
                  1. Adding a New Tool
                  2. Code Standards
                  3. Running Tests
                  4. Documentation Standards
                7. πŸ“„ License
                  1. πŸ™ Acknowledgments
                    1. πŸ“Š Project Stats
                      1. πŸ”— Links

                        MCP directory API

                        We provide all the information about MCP servers via our MCP API.

                        curl -X GET 'https://glama.ai/api/mcp/v1/servers/bernierllc/brain-trust-mcp'

                        If you have feedback or need assistance with the MCP directory API, please join our Discord server