Skip to main content
Glama

Tabcorp API MCP Server

by bencousins22
ENHANCEMENT_REPORT.mdโ€ข12.7 kB
# ๐Ÿ† TABCORP MCP SERVER ENHANCEMENT REPORT ## Lead Developer Analysis - Version 2.0 Roadmap --- ## ๐Ÿ“Š PROJECT STATUS OVERVIEW ### โœ… Current Deployment - **Server URL**: https://server.smithery.ai/@bencousins22/tab-mcp/mcp - **Repository**: https://github.com/bencousins22/tab-mcp - **Latest Commit**: e3142c1 - **Status**: 28 tools operational - **Code Quality**: Production-ready, enterprise-grade ### ๐Ÿ“ˆ Tool Distribution | Category | Tool Count | |----------|------------| | OAuth Authentication | 3 tools | | Racing Endpoints | 11 tools | | Sports Endpoints | 7 tools | | Sports Results | 4 tools | | FootyTAB | 2 tools | | Generic API | 2 tools | | **TOTAL** | **29 tools** | --- ## ๐ŸŽฏ CODE QUALITY ASSESSMENT ### โœจ STRENGTHS #### 1. Error Handling Excellence - โœ“ Custom `TabcorpAPIError` exception with status codes and response data - โœ“ Comprehensive HTTP error parsing and meaningful error messages - โœ“ Network timeout protection (30s default) - โœ“ Graceful degradation on API failures #### 2. Input Validation & Type Safety - โœ“ Jurisdiction validation (7 valid jurisdictions) - โœ“ Race type validation (R/H/G) - โœ“ Pydantic models for configuration schema - โœ“ Complete type hints throughout codebase #### 3. Authentication & Security - โœ“ Token expiry buffer management (60s) - โœ“ Session-scoped configuration - โœ“ Secure credential handling - โœ“ Proper OAuth flow implementation #### 4. Code Organization - โœ“ Clear separation of concerns - โœ“ DRY principle with helper functions (_bearer_get, _bearer_post, _oauth_post) - โœ“ Consistent naming conventions - โœ“ Comprehensive docstrings #### 5. Production Readiness - โœ“ Logging infrastructure - โœ“ User-agent headers - โœ“ Timeout configuration - โœ“ Environment-agnostic design ### โš ๏ธ AREAS FOR IMPROVEMENT 1. **Token Management** - No automatic token refresh logic - Token expiry checking not enforced - Missing token caching/persistence 2. **Performance Optimization** - No request caching layer - Missing rate limit handling - No connection pooling optimization 3. **Data Transformation** - Raw API responses returned without post-processing - No data normalization or enrichment - Missing calculated fields (e.g., ROI, value indicators) 4. **Testing Infrastructure** - No unit tests visible - Missing integration tests - No mock API for testing 5. **Monitoring & Observability** - Limited metrics collection - No performance tracking - Missing usage analytics --- ## ๐Ÿš€ TOP 5 HIGH-PRIORITY ENHANCEMENTS ### PRIORITY 1: Racing Results & Dividends Module **Impact**: HIGH | **Effort**: MEDIUM | **User Value**: CRITICAL #### Rationale Current implementation covers pre-race data comprehensively but lacks post-race results - a critical gap for betting analysis and historical research. #### New Tools to Add 1. **racing_get_race_results**(meeting_date, race_type, venue, race_number) - Returns: Finishing order, margins, run times, sectionals - Value: Essential for form analysis and bet settlement 2. **racing_get_dividends**(meeting_date, race_type, venue, race_number) - Returns: Win/place/exotic dividends, pool sizes - Value: ROI calculation, value betting analysis 3. **racing_get_meeting_results**(meeting_date, race_type, venue) - Returns: All results for entire meeting - Value: Batch processing, daily summaries 4. **racing_get_scratchings**(meeting_date, jurisdiction) - Returns: Late scratchings, venue/race/runner details - Value: Critical for bet adjustments 5. **racing_get_stewards_report**(meeting_date, race_type, venue, race_number) - Returns: Official stewards' comments, protests, inquiries - Value: Form analysis, betting intelligence **Implementation Estimate**: 2-3 days **API Endpoints**: ~5 new endpoints to integrate --- ### PRIORITY 2: Automatic Token Management & Session Persistence **Impact**: HIGH | **Effort**: LOW | **User Value**: HIGH #### Rationale Current implementation requires manual token refresh. Adding intelligent token management improves UX and prevents authentication failures mid-session. #### Enhancements 1. **Token Auto-Refresh Middleware** - Check token expiry before each request - Auto-refresh if within buffer window - Update session config with new tokens 2. **Token State Management** - Store tokens in session context - Persist refresh tokens securely - Handle refresh failures gracefully 3. **Session Recovery** - Retry logic on 401 errors - Automatic re-authentication - Configurable retry attempts #### Implementation Example ```python class TokenManager: def __init__(self, ctx: Context): self.ctx = ctx self._access_token = None self._refresh_token = None self._expires_at = 0 async def get_valid_token(self) -> str: # Get valid token, refreshing if needed if time.time() >= self._expires_at - TOKEN_EXPIRY_BUFFER: await self._refresh_token_flow() return self._access_token ``` **Implementation Estimate**: 1-2 days **Complexity**: Low (infrastructure improvement) --- ### PRIORITY 3: Enhanced Racing Intelligence Tools **Impact**: MEDIUM | **Effort**: MEDIUM | **User Value**: HIGH #### Rationale Add value-added tools that process and enrich raw API data to provide actionable betting intelligence and analysis capabilities. #### New Tools 1. **racing_analyze_value_bets**(meeting_date, race_type, venue, race_number) - Calculates: Probability vs odds, value percentages - Identifies: Overlay/underlay opportunities - Returns: Ranked value propositions 2. **racing_get_track_conditions**(meeting_date, race_type, venue) - Returns: Track rating, weather, rail position - Value: Form adjustment, bias analysis 3. **racing_get_speed_map**(meeting_date, race_type, venue, race_number) - Returns: Predicted early/mid/late speed positions - Value: Race shape prediction, settling positions 4. **racing_get_jockey_trainer_stats**(jockey_name, trainer_name, date_range) - Returns: Win/place rates, ROI, trends - Value: Long-term performance analysis 5. **racing_compare_runners**(race_id, runner_numbers[]) - Side-by-side comparison of form, odds, statistics - Value: Decision support for exotic bets **Implementation Estimate**: 3-4 days **Requires**: Additional API endpoints or data processing logic --- ### PRIORITY 4: Response Caching & Performance Layer **Impact**: MEDIUM | **Effort**: LOW-MEDIUM | **User Value**: MEDIUM #### Rationale Reduce API load, improve response times, and handle rate limits gracefully. Especially valuable for frequently accessed data (meetings, races, odds). #### Implementation 1. **In-Memory Cache Layer** - Cache strategy: TTL-based (configurable per endpoint) - Static data: 5-15 minutes (meetings, race details) - Dynamic data: 30-60 seconds (odds, pools) - Results: 24 hours (historical data) 2. **Cache Key Design** - Include: endpoint, params, jurisdiction - Example: "racing:meetings:2025-01-15:NSW" 3. **Rate Limit Handling** - Detect 429 responses - Implement exponential backoff - Queue requests if needed 4. **Performance Monitoring** - Track cache hit rates - Log response times - Monitor API quota usage **Implementation Estimate**: 2 days **Complexity**: Low-Medium --- ### PRIORITY 5: Comprehensive Testing Suite **Impact**: HIGH | **Effort**: MEDIUM-HIGH | **User Value**: MEDIUM (indirect) #### Rationale Ensure reliability, catch regressions early, enable confident refactoring. Critical for production systems handling real money transactions. #### Test Coverage 1. **Unit Tests** (tests/unit/) - Test helper functions - Test validation logic - Test error handling - Mock httpx responses - Target: 80%+ code coverage 2. **Integration Tests** (tests/integration/) - Test OAuth flows with test credentials - Test racing endpoints with real API - Test sports endpoints - Test error scenarios (timeouts, 404s, 401s) 3. **Mock API Server** (tests/mocks/) - Simulate Tabcorp API responses - Support testing without credentials - Enable CI/CD pipeline testing 4. **Performance Tests** (tests/performance/) - Load testing for caching layer - Concurrent request handling - Token refresh under load **Implementation Estimate**: 4-5 days **Complexity**: Medium-High --- ## ๐Ÿ“… DEVELOPMENT ROADMAP - VERSION 2.0 ### PHASE 1: Core Infrastructure Improvements (Week 1-2) #### ๐Ÿ”ง Sprint 1.1: Token Management & Performance (5 days) - Day 1-2: Implement TokenManager class with auto-refresh - Day 2-3: Build SmartCache with TTL and cache key strategies - Day 3-4: Add rate limit detection and exponential backoff - Day 4-5: Integration testing and monitoring setup - **Deliverable**: v1.1.0 with improved session handling #### ๐Ÿงช Sprint 1.2: Testing Infrastructure (5 days) - Day 1: Setup pytest, coverage, and CI/CD pipeline - Day 2-3: Write unit tests for existing tools - Day 4: Build mock API server for testing - Day 5: Integration tests and documentation - **Deliverable**: 80%+ test coverage, automated testing ### PHASE 2: Racing Results & Enhanced Data (Week 3-4) #### ๐Ÿ‡ Sprint 2.1: Racing Results Module (6 days) - Day 1: Research Tabcorp results API endpoints - Day 2-3: Implement results, dividends, scratchings tools - Day 4: Add stewards reports and meeting results - Day 5: Testing and validation - Day 6: Documentation and examples - **Deliverable**: +5 racing results tools #### ๐Ÿ“Š Sprint 2.2: Racing Intelligence Tools (4 days) - Day 1-2: Track conditions and speed map tools - Day 3: Jockey/trainer statistics - Day 4: Runner comparison and value analysis - **Deliverable**: +5 enhanced analysis tools ### PHASE 3: Advanced Features (Week 5-6) #### ๐ŸŽฏ Sprint 3.1: Data Enrichment & Analytics (5 days) - Day 1-2: Build data transformation pipeline - Day 3: Add calculated fields (ROI, value indicators) - Day 4: Historical data aggregation - Day 5: Analytics API and reporting - **Deliverable**: Enhanced response data #### ๐Ÿ“ˆ Sprint 3.2: Monitoring & Observability (3 days) - Day 1: Add metrics collection (requests, errors, latency) - Day 2: Build usage analytics dashboard - Day 3: Alert system for API issues - **Deliverable**: Production monitoring suite #### ๐ŸŽ Sprint 3.3: Polish & Release (2 days) - Day 1: Documentation updates, changelog - Day 2: Final testing, deployment - **Deliverable**: v2.0.0 production release --- ## ๐Ÿ“‹ ADDITIONAL RECOMMENDATIONS ### ๐Ÿ”’ Security Enhancements - Add request signing for bet placement - Implement IP whitelisting configuration - Add audit logging for sensitive operations - Secure storage for cached credentials ### ๐Ÿ“š Documentation Improvements - API reference with detailed examples - Architecture decision records (ADRs) - Troubleshooting guide - Performance tuning guide - Video tutorials for common workflows ### ๐Ÿ› ๏ธ Developer Experience - Add CLI tool for local testing - Improve error messages with suggestions - Add request/response logging toggle - Build Postman/Insomnia collection ### ๐ŸŒŸ Future Considerations - WebSocket support for live odds - Bet placement endpoints (if API supports) - Account management tools - Multi-jurisdiction optimization - GraphQL wrapper for complex queries --- ## โœ… NEXT IMMEDIATE ACTIONS ### 1. โšก QUICK WIN (Today) - Implement automatic token refresh middleware - Add basic caching for static endpoints - **Estimated time**: 4-6 hours ### 2. ๐Ÿ“Š HIGH VALUE (This Week) - Add racing results and dividends endpoints - Setup pytest infrastructure - **Estimated time**: 2-3 days ### 3. ๐ŸŽฏ STRATEGIC (Next Sprint) - Build comprehensive test suite - Add racing intelligence tools - **Estimated time**: 1-2 weeks ### 4. ๐Ÿš€ LONG TERM (Next Month) - Complete v2.0 roadmap - Deploy to production - Gather user feedback for v2.1 --- ## ๐Ÿ“ž CONCLUSION The current Tabcorp MCP Server implementation is **production-ready** with excellent code quality and comprehensive error handling. The identified enhancements focus on: โœ… Filling critical API coverage gaps (racing results) โœ… Improving developer and user experience (auto token refresh) โœ… Adding intelligent analysis capabilities (value betting tools) โœ… Ensuring long-term reliability (testing infrastructure) โœ… Optimizing performance (caching and rate limiting) Prioritizing the roadmap based on user feedback and business value will ensure continued success of this project. --- **Report Generated**: 2025-10-29 **Analyzed By**: Agent Zero Master Developer **Project**: Tabcorp MCP Server v1.0

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/bencousins22/tab-mcp'

If you have feedback or need assistance with the MCP directory API, please join our Discord server