Skip to main content
Glama

Plan-MCP

by bee4come
MIT License
1
README.md9.9 kB
# Plan-MCP A Model Context Protocol (MCP) server that leverages Google Gemini AI for intelligent project planning and code review. ## 🌟 Overview Plan-MCP acts as an AI-powered project architect that bridges Gemini's planning capabilities with Claude's coding abilities: - **Gemini as Architect**: Analyzes requirements, creates project plans, reviews code quality - **Claude as Developer**: Implements code based on Gemini's guidance - **Continuous Feedback Loop**: Gemini reviews execution results and provides iterative improvements ## 🚀 Features Plan-MCP provides **complete MCP feature support**, making it one of the most comprehensive MCP servers available: ### ✅ Complete MCP Feature Matrix | Feature | Status | Description | |---------|--------|-------------| | **Resources** | ✅ | File system access (file://, dir://, workspace://) | | **Prompts** | ✅ | 4 structured prompt templates for common tasks | | **Tools** | ✅ | 10 comprehensive tools for project management | | **Discovery** | ✅ | Dynamic tool discovery (handled by FastMCP) | | **Sampling** | ✅ | LLM text generation for documentation and tests | | **Roots** | ✅ | Workspace navigation and project root suggestions | | **Elicitation** | ✅ | Interactive user input collection | ### 🔧 Core Tools #### 1. Project Planning (`plan_project`) - Break down complex requirements into structured phases and tasks - Generate detailed project plans with priorities and dependencies - Estimate effort and identify potential risks - Support for technical constraints and preferred tech stacks #### 2. Code Review (`review_code`) - Comprehensive code quality analysis - Security vulnerability detection - Performance optimization suggestions - Best practices and design pattern recommendations - Language-agnostic support #### 3. Execution Analysis (`analyze_execution`) - Debug runtime errors with root cause analysis - Provide specific code fixes with explanations - Evaluate if execution meets expected behavior - Guide iterative development with next steps #### 4. Directory Review (`review_directory`) - Complete project/directory analysis - Multi-file code quality assessment - Project structure recommendations - Security scanning across entire codebase ### 🎯 Advanced Features #### Interactive Tools (Elicitation) - **Interactive Project Planning**: Collects user preferences and requirements dynamically - **Interactive Code Review**: Customizes review focus based on user needs #### LLM Sampling - **Documentation Generation**: Auto-generates comprehensive docs for code - **Test Generation**: Creates unit tests with proper assertions and edge cases #### File System Resources - **File Access**: Read individual files with `file://` URIs - **Directory Access**: Access entire directories with `dir://` URIs - **Workspace Navigation**: Current workspace info with `workspace://current` #### Workspace Management (Roots) - **Workspace Roots**: Lists available workspace directories - **Project Suggestions**: Recommends appropriate project locations by type #### Prompt Templates - **Code Review Template**: Structured code review prompts - **Project Planning Template**: Interactive planning conversations - **Debug Assistant**: Systematic debugging guidance - **Architecture Review**: System architecture analysis ## 📋 Prerequisites - Python 3.10 or higher - Google Gemini API key - Claude Code (for MCP integration) ## 🛠️ Installation ### Quick Start with uvx (Recommended) ```bash # Install and run directly with uvx uvx plan-mcp # Or add to Claude Code claude mcp add plan-mcp -- uvx plan-mcp ``` ### Traditional pip Installation ```bash # Install from PyPI pip install plan-mcp # Run the server plan-mcp ``` ## 🔧 Configuration ### Set up your Gemini API key ```bash export GEMINI_API_KEY="your_gemini_api_key_here" ``` Or create a `.env` file: ``` GEMINI_API_KEY=your_gemini_api_key_here GEMINI_MODEL=gemini-1.5-pro LOG_LEVEL=INFO ``` ### Claude Code Integration #### 🚀 Method 1: Direct from GitHub (Recommended) Run directly from GitHub using `uv` without local installation: ```bash # Team/project configuration (recommended) claude mcp add -s project plan-mcp -- uv tool run --from git+https://github.com/bee4come/plan-mcp.git plan-mcp ``` This creates a `.mcp.json` file in your project root. For secure API key management, edit the file: #### 🔧 Method 2: Local Installation (Recommended) Install locally for reliable connection: ```bash # Clone and install dependencies git clone https://github.com/bee4come/plan-mcp.git cd plan-mcp pip install mcp google-generativeai python-dotenv pydantic loguru rich # Add to Claude Code claude mcp add -s project plan-mcp -- python run_mcp.py ``` #### ✅ Verify Installation Check if the MCP server is working: ```bash # List MCP servers claude mcp list # Check server details claude mcp get plan-mcp # Test in Claude Code by typing: /mcp ``` ```json { "mcpServers": { "plan-mcp": { "command": "uv", "args": [ "tool", "run", "--from", "git+https://github.com/bee4come/plan-mcp.git", "plan-mcp" ], "env": { "GEMINI_API_KEY": "${GEMINI_API_KEY}" } } } } ``` #### Alternative Configuration Options **Personal global configuration:** ```bash claude mcp add -s user plan-mcp -e GEMINI_API_KEY=your_api_key -- uv tool run --from git+https://github.com/bee4come/plan-mcp.git plan-mcp ``` **Local testing configuration:** ```bash claude mcp add plan-mcp -e GEMINI_API_KEY=your_api_key -- uv tool run --from git+https://github.com/bee4come/plan-mcp.git plan-mcp ``` #### Managing MCP Services ```bash # List all services claude mcp list # Get service details claude mcp get plan-mcp # Check status in Claude Code # Type /mcp command to view connection status ``` ## 💻 Usage Once configured, you can use these tools in Claude Code: ### 1. Create a project plan ``` Use the plan_project tool to create a plan for building a REST API for task management with user authentication ``` ### 2. Review code ``` Use the review_code tool to review this Python function for security and performance issues: [paste code] ``` ### 3. Review entire directory/project ``` Use the review_directory tool to review my entire Python project at /path/to/project for security and code quality issues ``` ### 4. Analyze execution errors ``` Use the analyze_execution tool to help me debug this error: [paste code and error] ``` ### 5. Access files and directories ``` You can now ask Claude to analyze files directly: "Please review the code in file:///path/to/my/project and suggest improvements" ``` ## 🏗️ Architecture ``` plan-mcp/ ├── plan_mcp/ │ ├── api/ # Gemini API integration │ ├── tools/ # MCP tools (planner, reviewer, analyzer) │ ├── prompts/ # System prompts for Gemini │ ├── utils/ # Utilities (logging, etc.) │ ├── config.py # Configuration management │ ├── models.py # Pydantic data models │ └── server.py # MCP server implementation └── README.md ``` ## 🤝 Workflow Example 1. **Human → Claude**: "Help me build a web scraper" 2. **Claude → Plan-MCP**: Requests project plan 3. **Plan-MCP → Gemini**: Analyzes requirements 4. **Gemini → Plan-MCP**: Returns structured plan 5. **Plan-MCP → Claude**: Delivers plan 6. **Claude**: Implements first task 7. **Claude → Plan-MCP**: Submits code for review 8. **Plan-MCP → Gemini**: Reviews code 9. **Gemini → Plan-MCP**: Provides feedback 10. **Plan-MCP → Claude**: Delivers improvements 11. **Cycle continues...** ## 📚 API Reference ### Tools #### `plan_project` - **Description**: Create a comprehensive project plan - **Parameters**: - `description` (required): Project description - `requirements`: List of specific requirements - `constraints`: Project constraints - `tech_stack`: Preferred technologies #### `review_code` - **Description**: Review code for quality and issues - **Parameters**: - `code` (required): Code to review - `language` (required): Programming language - `context`: Additional context - `focus_areas`: Specific areas to focus on #### `analyze_execution` - **Description**: Analyze execution results and debug errors - **Parameters**: - `code` (required): Code that was executed - `execution_output` (required): Output or error messages - `expected_behavior`: What the code should do - `error_messages`: Specific error messages - `language`: Programming language (default: python) ## 🧪 Development ### Set up development environment ```bash # Clone the repository git clone https://github.com/bee4come/plan-mcp.git cd plan-mcp # Install in development mode pip install -e ".[dev]" # Run tests pytest ``` ### Code quality ```bash # Format code black plan_mcp/ # Lint code ruff check plan_mcp/ # Type checking mypy plan_mcp/ ``` ## 🐛 Troubleshooting ### Common Issues 1. **"GEMINI_API_KEY not found"** - Ensure your API key is set in environment variables: `export GEMINI_API_KEY="your_key_here"` - Or create a `.env` file in your working directory with `GEMINI_API_KEY=your_key_here` - Get your API key from: https://makersuite.google.com/app/apikey 2. **Connection errors** - Verify your internet connection - Check if the Gemini API is accessible - Ensure your API key has proper permissions 3. **MCP connection issues** - Restart Claude Code after configuration - Check that the server starts without errors - Look at Claude Code logs for errors ## 📄 License MIT License - see LICENSE file for details ## 🙏 Acknowledgments - Google Gemini for powerful AI capabilities - Anthropic for Claude and the MCP protocol - The open-source community for inspiration

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/bee4come/plan-mcp'

If you have feedback or need assistance with the MCP directory API, please join our Discord server