Skip to main content
Glama

basic-memory

knowledge.py7.73 kB
"""Knowledge graph models.""" from datetime import datetime from basic_memory.utils import ensure_timezone_aware from typing import Optional from sqlalchemy import ( Integer, String, Text, ForeignKey, UniqueConstraint, DateTime, Index, JSON, text, ) from sqlalchemy.orm import Mapped, mapped_column, relationship from basic_memory.models.base import Base from basic_memory.utils import generate_permalink class Entity(Base): """Core entity in the knowledge graph. Entities represent semantic nodes maintained by the AI layer. Each entity: - Has a unique numeric ID (database-generated) - Maps to a file on disk - Maintains a checksum for change detection - Tracks both source file and semantic properties - Belongs to a specific project """ __tablename__ = "entity" __table_args__ = ( # Regular indexes Index("ix_entity_type", "entity_type"), Index("ix_entity_title", "title"), Index("ix_entity_created_at", "created_at"), # For timeline queries Index("ix_entity_updated_at", "updated_at"), # For timeline queries Index("ix_entity_project_id", "project_id"), # For project filtering # Project-specific uniqueness constraints Index( "uix_entity_permalink_project", "permalink", "project_id", unique=True, sqlite_where=text("content_type = 'text/markdown' AND permalink IS NOT NULL"), ), Index( "uix_entity_file_path_project", "file_path", "project_id", unique=True, ), ) # Core identity id: Mapped[int] = mapped_column(Integer, primary_key=True) title: Mapped[str] = mapped_column(String) entity_type: Mapped[str] = mapped_column(String) entity_metadata: Mapped[Optional[dict]] = mapped_column(JSON, nullable=True) content_type: Mapped[str] = mapped_column(String) # Project reference project_id: Mapped[int] = mapped_column(Integer, ForeignKey("project.id"), nullable=False) # Normalized path for URIs - required for markdown files only permalink: Mapped[Optional[str]] = mapped_column(String, nullable=True, index=True) # Actual filesystem relative path file_path: Mapped[str] = mapped_column(String, index=True) # checksum of file checksum: Mapped[Optional[str]] = mapped_column(String, nullable=True) # Metadata and tracking created_at: Mapped[datetime] = mapped_column( DateTime(timezone=True), default=lambda: datetime.now().astimezone() ) updated_at: Mapped[datetime] = mapped_column( DateTime(timezone=True), default=lambda: datetime.now().astimezone(), onupdate=lambda: datetime.now().astimezone(), ) # Relationships project = relationship("Project", back_populates="entities") observations = relationship( "Observation", back_populates="entity", cascade="all, delete-orphan" ) outgoing_relations = relationship( "Relation", back_populates="from_entity", foreign_keys="[Relation.from_id]", cascade="all, delete-orphan", ) incoming_relations = relationship( "Relation", back_populates="to_entity", foreign_keys="[Relation.to_id]", cascade="all, delete-orphan", ) @property def relations(self): """Get all relations (incoming and outgoing) for this entity.""" return self.incoming_relations + self.outgoing_relations @property def is_markdown(self): """Check if the entity is a markdown file.""" return self.content_type == "text/markdown" def __getattribute__(self, name): """Override attribute access to ensure datetime fields are timezone-aware.""" value = super().__getattribute__(name) # Ensure datetime fields are timezone-aware if name in ("created_at", "updated_at") and isinstance(value, datetime): return ensure_timezone_aware(value) return value def __repr__(self) -> str: return f"Entity(id={self.id}, name='{self.title}', type='{self.entity_type}'" class Observation(Base): """An observation about an entity. Observations are atomic facts or notes about an entity. """ __tablename__ = "observation" __table_args__ = ( Index("ix_observation_entity_id", "entity_id"), # Add FK index Index("ix_observation_category", "category"), # Add category index ) id: Mapped[int] = mapped_column(Integer, primary_key=True) entity_id: Mapped[int] = mapped_column(Integer, ForeignKey("entity.id", ondelete="CASCADE")) content: Mapped[str] = mapped_column(Text) category: Mapped[str] = mapped_column(String, nullable=False, default="note") context: Mapped[Optional[str]] = mapped_column(Text, nullable=True) tags: Mapped[Optional[list[str]]] = mapped_column( JSON, nullable=True, default=list, server_default="[]" ) # Relationships entity = relationship("Entity", back_populates="observations") @property def permalink(self) -> str: """Create synthetic permalink for the observation. We can construct these because observations are always defined in and owned by a single entity. """ return generate_permalink( f"{self.entity.permalink}/observations/{self.category}/{self.content}" ) def __repr__(self) -> str: # pragma: no cover return f"Observation(id={self.id}, entity_id={self.entity_id}, content='{self.content}')" class Relation(Base): """A directed relation between two entities.""" __tablename__ = "relation" __table_args__ = ( UniqueConstraint("from_id", "to_id", "relation_type", name="uix_relation_from_id_to_id"), UniqueConstraint( "from_id", "to_name", "relation_type", name="uix_relation_from_id_to_name" ), Index("ix_relation_type", "relation_type"), Index("ix_relation_from_id", "from_id"), # Add FK indexes Index("ix_relation_to_id", "to_id"), ) id: Mapped[int] = mapped_column(Integer, primary_key=True) from_id: Mapped[int] = mapped_column(Integer, ForeignKey("entity.id", ondelete="CASCADE")) to_id: Mapped[Optional[int]] = mapped_column( Integer, ForeignKey("entity.id", ondelete="CASCADE"), nullable=True ) to_name: Mapped[str] = mapped_column(String) relation_type: Mapped[str] = mapped_column(String) context: Mapped[Optional[str]] = mapped_column(Text, nullable=True) # Relationships from_entity = relationship( "Entity", foreign_keys=[from_id], back_populates="outgoing_relations" ) to_entity = relationship("Entity", foreign_keys=[to_id], back_populates="incoming_relations") @property def permalink(self) -> str: """Create relation permalink showing the semantic connection. Format: source/relation_type/target Example: "specs/search/implements/features/search-ui" """ # Only create permalinks when both source and target have permalinks from_permalink = self.from_entity.permalink or self.from_entity.file_path if self.to_entity: to_permalink = self.to_entity.permalink or self.to_entity.file_path return generate_permalink(f"{from_permalink}/{self.relation_type}/{to_permalink}") return generate_permalink(f"{from_permalink}/{self.relation_type}/{self.to_name}") def __repr__(self) -> str: return f"Relation(id={self.id}, from_id={self.from_id}, to_id={self.to_id}, to_name={self.to_name}, type='{self.relation_type}')" # pragma: no cover

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/basicmachines-co/basic-memory'

If you have feedback or need assistance with the MCP directory API, please join our Discord server