Text Classification MCP Server (Model2Vec)
A powerful Model Context Protocol (MCP) server that provides comprehensive text classification tools using fast static embeddings from Model2Vec (Minish Lab).
๐ ๏ธ Complete MCP Tools & Resources
This server provides 6 essential tools, 2 resources, and 1 prompt template for text classification:
๐ท๏ธ Classification Tools
classify_text- Classify single text with confidence scoresbatch_classify- Classify multiple texts simultaneously
๐ Category Management Tools
add_custom_category- Add individual custom categoriesbatch_add_custom_categories- Add multiple categories at oncelist_categories- View all available categoriesremove_categories- Remove unwanted categories
๐ Resources
categories://list- Access category list programmaticallymodel://info- Get model and system information
๐ฌ Prompt Templates
classification_prompt- Ready-to-use classification prompt template
๐ Key Features
Multiple Transports: Supports stdio (local) and HTTP/SSE (remote) transports
Fast Classification: Uses efficient static embeddings from Model2Vec
10 Default Categories: Technology, business, health, sports, entertainment, politics, science, education, travel, food
Custom Categories: Add your own categories with descriptions
Batch Processing: Classify multiple texts at once
Resource Endpoints: Access category lists and model information
Prompt Templates: Built-in prompts for classification tasks
Production Ready: Docker, nginx, systemd support
๐ Installation
Prerequisites
Python 3.10+
uvpackage manager (recommended) orpip
Quick Setup
๐โโ๏ธ Running the Server
Option 1: Stdio Transport (Local/Traditional)
Option 2: HTTP Transport (Remote/Web)
Option 3: Using the HTTP Runner
๐ง Configuration
For Claude Desktop
Stdio Transport (Local)
Add to ~/Library/Application Support/Claude/claude_desktop_config.json:
HTTP Transport (Remote)
Add to ~/Library/Application Support/Claude/claude_desktop_config.json:
For VS Code
Add to .vscode/mcp.json:
For Cursor IDE
Similar to Claude Desktop, but check Cursor's MCP documentation for the exact configuration path.
๐ ๏ธ Available Tools
classify_text
Classify a single text into predefined categories with confidence scores.
Parameters:
text(string): The text to classifytop_k(int, optional): Number of top categories to return (default: 3)
Returns: JSON with predictions, confidence scores, and category descriptions
Example:
batch_classify
Classify multiple texts simultaneously for efficient processing.
Parameters:
texts(list): List of texts to classifytop_k(int, optional): Number of top categories per text (default: 1)
Returns: JSON with batch classification results
Example:
add_custom_category
Add a new custom category for classification.
Parameters:
category_name(string): Name of the new categorydescription(string): Description to generate the category embedding
Returns: JSON with operation result
Example:
batch_add_custom_categories
Add multiple custom categories in a single operation for efficiency.
Parameters:
categories_data(list): List of dictionaries with 'name' and 'description' keys
Returns: JSON with batch operation results
Example:
list_categories
List all available categories and their descriptions.
Parameters: None
Returns: JSON with all categories and their descriptions
remove_categories
Remove one or multiple categories from the classification system.
Parameters:
category_names(list): List of category names to remove
Returns: JSON with removal results for each category
Example:
๐ Available Resources
categories://list: Get list of available categories with metadatamodel://info: Get information about the loaded Model2Vec model and system status
๐ฌ Available Prompts
classification_prompt: Template for text classification tasks with context and instructions
Parameters:
text(string): The text to classify
Returns: Formatted prompt for classification with available categories listed
๐งช Testing
Test HTTP Server
Test with MCP Inspector
๐ณ Docker Deployment
Basic Docker
Docker Compose
๐ Production Deployment
Systemd Service
Nginx Reverse Proxy
The included nginx.conf provides:
HTTP/HTTPS termination
Proper SSE headers
Load balancing support
SSL configuration template
๐ Transport Comparison
Feature | Stdio Transport | HTTP Transport |
Use Case | Local integration | Remote/web access |
Performance | Fastest | Very fast |
Setup | Simple | Requires server |
Scalability | One client | Multiple clients |
Network | Local only | Network accessible |
Security | Process isolation | HTTP-based auth |
Debugging | MCP Inspector | HTTP tools + Inspector |
๐ Troubleshooting
Common Issues
Server won't start
# Check if port is in use lsof -i :8000 # Try different port python run_http_server.py --port 9000Claude Desktop connection fails
# Check server status ./check_server.sh # Verify config file syntax cat ~/Library/Application\ Support/Claude/claude_desktop_config.json | python -m json.toolModel download fails
# Manual model download python -c "from model2vec import StaticModel; StaticModel.from_pretrained('minishlab/potion-base-8M')"
Debug Mode
๐ Technical Details
Model:
minishlab/potion-base-8Mfrom Model2VecSimilarity: Cosine similarity between text and category embeddings
Performance: ~30MB model, fast inference with static embeddings
Protocol: MCP specification 2024-11-05
Transports: stdio, HTTP+SSE, Streamable HTTP
๐ค Contributing
Fork the repository
Create a feature branch
Add tests for new functionality
Submit a pull request
๐ License
MIT License - see LICENSE file for details.
๐ Acknowledgments
Model2Vec by Minish Lab for fast static embeddings
Anthropic for the Model Context Protocol specification
FastMCP for the excellent Python MCP framework
Need help? Check the troubleshooting section or open an issue in the repository.