Skip to main content
Glama

MCP AI Chat LangChain

by badrinathvm
app.py2.18 kB
import asyncio import os from dotenv import load_dotenv from langchain_openai import ChatOpenAI from mcp_use import MCPAgent, MCPClient from langchain_groq import ChatGroq async def run_memory_chat(): load_dotenv() os.environ["OPENAI_API_KEY"] = os.getenv("OPENAI_API_KEY") os.environ["GROQ_API_KEY"] = os.getenv("GROQ_API_KEY") config_file = "browser_mcp.json" print("Initializing Chat...") # Initialize MCP client client = MCPClient.from_config_file(config_file) # Initialize LLM llm = ChatGroq(model="qwen-qwq-32b") # create agent with client agent = MCPAgent( llm=llm, client=client, max_steps=15, verbose=True, ) print("\n===== Interactive MCP Chat =====") print("Type 'exit' or 'quit' to end the conversation") print("Type 'clear' to clear conversation history") print("==================================\n") try: # Main Chat loop while True: user_input = input("\nYou: ") if user_input.lower() in ["exit", "quit"]: print("\n===== Conversation Ended =====") print("Thank you for using the MCP Chat!") print("==================================\n") break elif user_input.lower() == "clear": agent.clear_conversation_history() print("\nConversation history cleared.") continue # Get response from agent print("\nAssistant: ", end="", flush=True) try: # Get response from agent response = await agent.run(user_input) print(f"\nMCP Agent: {response}") except Exception as e: print(f"Error: {e}") finally: print("\n===== Conversation Ended =====") print("Thank you for using the MCP Chat!") print("==================================\n") if client and client.sessions: await client.close_all_sessions() if __name__ == "__main__": asyncio.run(run_memory_chat())

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/badrinathvm/mcp-ai-chat-langchain'

If you have feedback or need assistance with the MCP directory API, please join our Discord server