Skip to main content
Glama

perplexity_search_web

Search the web for current information using time-based filters to find recent results from today, this week, month, or year.

Instructions

Search the web using Perplexity AI with recency filtering

Input Schema

TableJSON Schema
NameRequiredDescriptionDefault
queryYes
recencyNomonth

Implementation Reference

  • Registers the 'perplexity_search_web' tool with the MCP server, including its description and input schema.
    @server.list_tools() async def list_tools() -> list[types.Tool]: return [ types.Tool( name="perplexity_search_web", description="Search the web using Perplexity AI with recency filtering", inputSchema={ "type": "object", "properties": { "query": {"type": "string"}, "recency": { "type": "string", "enum": ["day", "week", "month", "year"], "default": "month", }, }, "required": ["query"], }, ) ]
  • Input schema for the 'perplexity_search_web' tool: requires 'query' string, optional 'recency' enum with default 'month'.
    inputSchema={ "type": "object", "properties": { "query": {"type": "string"}, "recency": { "type": "string", "enum": ["day", "week", "month", "year"], "default": "month", }, }, "required": ["query"], },
  • MCP call_tool handler that dispatches 'perplexity_search_web' calls to the implementation function.
    @server.call_tool() async def call_tool( name: str, arguments: dict ) -> list[types.TextContent | types.ImageContent | types.EmbeddedResource]: if name == "perplexity_search_web": query = arguments["query"] recency = arguments.get("recency", "month") result = await call_perplexity(query, recency) return [types.TextContent(type="text", text=str(result))] raise ValueError(f"Tool not found: {name}")
  • Core implementation: Calls Perplexity AI API with query and recency filter, formats response including citations.
    async def call_perplexity(query: str, recency: str) -> str: url = "https://api.perplexity.ai/chat/completions" # Get the model from environment variable or use "sonar" as default model = os.getenv("PERPLEXITY_MODEL", "sonar") payload = { "model": model, "messages": [ {"role": "system", "content": "Be precise and concise."}, {"role": "user", "content": query}, ], "max_tokens": "512", "temperature": 0.2, "top_p": 0.9, "return_images": False, "return_related_questions": False, "search_recency_filter": recency, "top_k": 0, "stream": False, "presence_penalty": 0, "frequency_penalty": 1, "return_citations": True, "search_context_size": "low", } headers = { "Authorization": f"Bearer {os.getenv('PERPLEXITY_API_KEY')}", "Content-Type": "application/json", } async with aiohttp.ClientSession() as session: async with session.post(url, json=payload, headers=headers) as response: response.raise_for_status() data = await response.json() content = data["choices"][0]["message"]["content"] # Format response with citations if available if "citations" in data: citations = data["citations"] formatted_citations = "\n\nCitations:\n" + "\n".join(f"[{i+1}] {url}" for i, url in enumerate(citations)) return content + formatted_citations return content

Other Tools

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/ayoubzeroual/perplexity-mcp'

If you have feedback or need assistance with the MCP directory API, please join our Discord server