Skip to main content
Glama

MCP Agent Orchestration System

by aviz85
client.py2.15 kB
import asyncio from mcp import ClientSession, StdioServerParameters from mcp.client.stdio import stdio_client async def main(): # Configure connection to our server server_params = StdioServerParameters( command="python", args=["server.py"], ) # Connect to the server via stdio async with stdio_client(server_params) as (read, write): # Create a client session async with ClientSession(read, write) as session: # Initialize the connection await session.initialize() print("Connected to MCP server") # --- Explore server capabilities --- # List available resources print("\n--- Available Resources ---") resources = await session.list_resources() for resource in resources: print(f"- {resource.name}: {resource.description}") # List available tools print("\n--- Available Tools ---") tools = await session.list_tools() for tool in tools: print(f"- {tool.name}: {tool.description}") # List available prompts print("\n--- Available Prompts ---") prompts = await session.list_prompts() for prompt in prompts: print(f"- {prompt.name}: {prompt.description}") # --- Use server capabilities --- # Read a resource print("\n--- Reading Resources ---") content, mime_type = await session.read_resource("docs://overview") print(f"Resource content: {content}") print(f"Mime type: {mime_type}") # Call a tool print("\n--- Calling Tools ---") result = await session.call_tool("add_numbers", arguments={"a": 5, "b": 7}) print(f"Tool result: {result}") # Get a prompt print("\n--- Getting Prompts ---") prompt = await session.get_prompt("analyze_text", arguments={"text": "MCP is awesome!"}) print(f"Prompt: {prompt}") if __name__ == "__main__": asyncio.run(main())

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/aviz85/mcp-agents-orchestra'

If you have feedback or need assistance with the MCP directory API, please join our Discord server