Langfuse MCP Server
Model Context Protocol server for Langfuse observability. Query traces, debug errors, analyze sessions, manage prompts.
Why langfuse-mcp?
Comparison with official Langfuse MCP (as of Jan 2026):
langfuse-mcp | Official | |
Traces & Observations | Yes | No |
Sessions & Users | Yes | No |
Exception Tracking | Yes | No |
Prompt Management | Yes | Yes |
Dataset Management | Yes | No |
Selective Tool Loading | Yes | No |
This project provides a full observability toolkit — traces, observations, sessions, exceptions, and prompts — while the official MCP focuses on prompt management.
Quick Start
Requires uv (for uvx).
Get credentials from Langfuse Cloud → Settings → API Keys. If self-hosted, use your instance URL for LANGFUSE_HOST.
Restart your CLI, then verify with /mcp (Claude Code) or codex mcp list (Codex).
Tools (25 total)
Category | Tools |
Traces |
|
Observations |
|
Sessions |
|
Exceptions |
|
Prompts |
|
Datasets |
|
Schema |
|
Dataset Item Updates (Upsert)
Langfuse uses upsert for dataset items. To edit an existing item, call create_dataset_item with item_id. If the ID exists, it updates; otherwise it creates a new item.
Skill
This project includes a skill with debugging playbooks.
Via (registry-based):
Via (GitHub-based):
Manual install:
Try asking: "help me debug langfuse traces"
See skills/langfuse/SKILL.md for full documentation.
Selective Tool Loading
Load only the tool groups you need to reduce token overhead:
Available groups: traces, observations, sessions, exceptions, prompts, datasets, schema
Read-Only Mode
Disable all write operations for safer read-only access:
This disables: create_text_prompt, create_chat_prompt, update_prompt_labels, create_dataset, create_dataset_item, delete_dataset_item
Other Clients
Cursor
Create .cursor/mcp.json in your project (or ~/.cursor/mcp.json for global):
Docker
Development
License
MIT