Skip to main content
Glama
ARCHITECTURE.md12 kB
# AI Agent Generator MCP Server - Architecture Specification ## Overview The AI Agent Generator MCP Server is designed to enable any MCP-compatible AI client to autonomously create and deploy AI agents through natural language instructions, similar to SmythOS Agent Weaver functionality. ## Core Philosophy **Meta-Agent Architecture**: This MCP server acts as a "meta-agent" - an AI system that creates other AI agents by: 1. Parsing natural language specifications 2. Mapping requirements to technical components 3. Generating executable agent workflows 4. Providing deployment and management capabilities ## System Architecture ``` AI Client (Claude, GPT-4, etc.) | | MCP Protocol (JSON-RPC) | ┌───▼────────────────────────────────────┐ │ AI Agent Generator MCP Server │ ├─────────────────────────────────────────┤ │ Tools: │ │ ├── parse_agent_specification │ │ ├── generate_agent_workflow │ │ ├── map_components │ │ ├── validate_agent_design │ │ ├── deploy_agent │ │ ├── test_agent │ │ └── manage_agent_lifecycle │ ├─────────────────────────────────────────┤ │ Resources: │ │ ├── component_library │ │ ├── workflow_templates │ │ ├── deployment_configs │ │ └── agent_registry │ └─────────────────────────────────────────┘ | | Generated Artifacts | ┌───▼────────────────────────────────────┐ │ Agent Execution Environment │ │ ├── Docker Containers │ │ ├── Serverless Functions │ │ ├── MCP Servers │ │ └── API Endpoints │ └─────────────────────────────────────────┘ ``` ## Core Components ### 1. Agent Specification Parser **Purpose**: Converts natural language descriptions into structured agent specifications **Input Processing**: - Natural language prompts - Goal definitions - Constraint specifications - Input/output requirements - Integration needs **Output**: Structured JSON specification following Agent Definition Schema ### 2. Component Library **Standard Components**: - **LLM Integrations**: OpenAI, Anthropic, Google, Local models - **Data Sources**: APIs, Databases, Files, Web scraping - **Processing Units**: Text analysis, Data transformation, Logic operations - **Output Generators**: File creation, API calls, Notifications - **Control Flow**: Conditionals, Loops, Error handling - **Security**: Authentication, Rate limiting, Validation ### 3. Workflow Generator **Capabilities**: - Visual workflow representation (Mermaid diagrams) - Executable code generation (Python, Node.js, Docker) - MCP server templates - API endpoint definitions - Configuration management ### 4. Deployment Engine **Target Platforms**: - Docker containers - Serverless functions (AWS Lambda, Vercel, etc.) - MCP server instances - Standalone applications - Cloud platforms (Hugging Face Spaces, Railway, etc.) ## Tool Specifications ### Primary Tools #### 1. `parse_agent_specification` **Purpose**: Parse natural language into structured agent specification **Parameters**: ```json { "prompt": "string", // Natural language description "context": "object", // Optional context about existing systems "constraints": "object", // Technical or business constraints "preferences": "object" // Deployment, framework, or style preferences } ``` **Returns**: ```json { "specification": { "name": "string", "description": "string", "goal": "string", "inputs": ["array of input definitions"], "outputs": ["array of output definitions"], "skills": ["array of required capabilities"], "constraints": ["array of constraints"], "integrations": ["array of external service requirements"] }, "confidence_score": "number", "missing_info": ["array of clarification questions"] } ``` #### 2. `generate_agent_workflow` **Purpose**: Create executable workflow from specification **Parameters**: ```json { "specification": "object", // From parse_agent_specification "target_platform": "string", // docker|serverless|mcp|api "framework": "string", // langchain|llamaindex|custom "language": "string" // python|typescript|javascript } ``` **Returns**: ```json { "workflow": { "components": ["array of workflow components"], "connections": ["array of component connections"], "configuration": "object" }, "code": { "files": ["array of generated code files"], "dependencies": ["array of required packages"], "deployment_config": "object" }, "visualization": "string" // Mermaid diagram } ``` #### 3. `map_components` **Purpose**: Map agent requirements to available components **Parameters**: ```json { "requirements": ["array of required capabilities"], "preferences": "object", // Performance, cost, complexity preferences "existing_components": ["array of available components"] } ``` **Returns**: ```json { "component_mapping": [ { "requirement": "string", "component": "object", "alternatives": ["array of alternative components"], "confidence": "number" } ], "missing_components": ["array of requirements without matches"], "custom_component_suggestions": ["array of suggested custom components"] } ``` #### 4. `validate_agent_design` **Purpose**: Validate agent design for correctness and best practices **Parameters**: ```json { "workflow": "object", // Generated workflow "specification": "object", // Original specification "validation_rules": ["array of validation rules to apply"] } ``` **Returns**: ```json { "is_valid": "boolean", "validation_results": [ { "rule": "string", "status": "pass|fail|warning", "message": "string", "suggestions": ["array of improvement suggestions"] } ], "performance_estimates": "object", "cost_estimates": "object" } ``` #### 5. `deploy_agent` **Purpose**: Deploy generated agent to target platform **Parameters**: ```json { "workflow": "object", // Validated workflow "deployment_config": "object", // Platform-specific config "environment": "string", // development|staging|production "secrets": "object" // API keys, credentials (handled securely) } ``` **Returns**: ```json { "deployment_id": "string", "endpoint": "string", // Access URL or connection details "status": "string", // deploying|ready|failed "logs": ["array of deployment logs"], "monitoring_urls": ["array of monitoring dashboards"] } ``` #### 6. `test_agent` **Purpose**: Run comprehensive tests on deployed agent **Parameters**: ```json { "deployment_id": "string", "test_cases": ["array of test scenarios"], "test_type": "string" // unit|integration|performance|security } ``` **Returns**: ```json { "test_results": [ { "test_name": "string", "status": "pass|fail", "execution_time": "number", "output": "object", "errors": ["array of errors if any"] } ], "overall_status": "string", "performance_metrics": "object", "recommendations": ["array of optimization suggestions"] } ``` #### 7. `manage_agent_lifecycle` **Purpose**: Handle agent lifecycle operations **Parameters**: ```json { "deployment_id": "string", "action": "string", // start|stop|restart|update|delete|scale "parameters": "object" // Action-specific parameters } ``` **Returns**: ```json { "action_id": "string", "status": "string", // executing|completed|failed "result": "object", // Action-specific results "logs": ["array of action logs"] } ``` ### Helper Tools #### 8. `get_component_library` **Purpose**: Retrieve available components and their capabilities #### 9. `get_workflow_templates` **Purpose**: Get predefined workflow templates for common use cases #### 10. `estimate_resources` **Purpose**: Estimate computational resources and costs for agent #### 11. `generate_documentation` **Purpose**: Create comprehensive documentation for generated agent #### 12. `export_agent_config` **Purpose**: Export agent configuration in various formats (JSON, YAML, etc.) ## Resources ### 1. Component Library Resource **URI**: `component-library://standard` **Content**: JSON catalog of available components with schemas and examples ### 2. Workflow Templates Resource **URI**: `workflow-templates://category/{category}` **Content**: Pre-built workflow templates for common patterns ### 3. Deployment Configurations Resource **URI**: `deployment-configs://platform/{platform}` **Content**: Platform-specific deployment configuration templates ### 4. Agent Registry Resource **URI**: `agent-registry://user/{user_id}` **Content**: Registry of created and deployed agents for a user ## Data Schemas ### Agent Definition Schema ```json { "$schema": "http://json-schema.org/draft-07/schema#", "type": "object", "properties": { "metadata": { "name": "string", "version": "string", "description": "string", "tags": ["array of strings"] }, "specification": { "goal": "string", "inputs": ["array of input schemas"], "outputs": ["array of output schemas"], "skills": ["array of skill definitions"], "constraints": ["array of constraint definitions"] }, "architecture": { "components": ["array of component definitions"], "connections": ["array of connection definitions"], "configuration": "object" }, "deployment": { "platform": "string", "resources": "object", "environment": "object" } } } ``` ## Security Considerations 1. **Input Validation**: All inputs are validated against schemas 2. **Sandboxed Execution**: Generated code runs in isolated environments 3. **Access Control**: User-based permissions for agent creation and deployment 4. **Secret Management**: Secure handling of API keys and credentials 5. **Code Review**: Optional human review step before deployment 6. **Monitoring**: Comprehensive logging and monitoring of generated agents ## Integration Patterns ### With Existing MCP Clients - **Claude Desktop**: Natural language agent creation interface - **VS Code Extensions**: Integrated development workflow - **Custom Applications**: API-based agent generation ### With Deployment Platforms - **Docker**: Containerized agent deployment - **Serverless**: AWS Lambda, Vercel Functions - **Cloud Platforms**: Hugging Face Spaces, Railway, Fly.io - **Edge**: Cloudflare Workers, Deno Deploy ## Future Enhancements 1. **Visual Workflow Editor**: Web-based drag-and-drop interface 2. **Agent Marketplace**: Share and discover agent templates 3. **Advanced Analytics**: Performance monitoring and optimization 4. **Multi-Agent Orchestration**: Coordinate multiple agents 5. **Natural Language Debugging**: Debug agents through conversation 6. **Auto-scaling**: Dynamic resource allocation based on usage ## Performance Targets - **Agent Creation Time**: < 30 seconds for simple agents - **Deployment Time**: < 2 minutes for containerized deployment - **Success Rate**: > 95% for well-defined specifications - **Resource Efficiency**: Minimal overhead for generated agents

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/arturwyroslak/ai-agent-generator-mcp'

If you have feedback or need assistance with the MCP directory API, please join our Discord server