Skip to main content
Glama
README.md5.65 kB
# FastAPI + MCP Server Integration with Gemini CLI This project demonstrates how to build a FastAPI application, wrap it as an MCP (Model Context Protocol) Server, and integrate it with Gemini CLI for direct tool calling. ## Project Structure ``` ├── sample_app.py # FastAPI application with user and task management ├── mcp_server.py # MCP server that wraps the FastAPI app ├── requirements.txt # Python dependencies ├── setup.sh # Setup script ├── demo.sh # Interactive demonstration script ├── test_integration.py # Integration test script ├── venv/ # Python virtual environment └── README.md # This file ``` ## Features ### FastAPI Application (`sample_app.py`) - **User Management**: Create, read users with name, email, and age - **Task Management**: Create, read, update, delete tasks - **Statistics**: Get overview of users and tasks - **Health Check**: Basic health monitoring endpoint ### MCP Server (`mcp_server.py`) - **Tool Integration**: Exposes all FastAPI endpoints as MCP tools - **Error Handling**: Proper HTTP error handling and logging - **Type Safety**: Full type annotations and schema validation ### Available MCP Tools 1. `get_app_info` - Get basic app information 2. `get_health` - Check app health status 3. `get_users` - List all users 4. `create_user` - Create a new user 5. `get_user` - Get user by ID 6. `get_tasks` - List all tasks 7. `create_task` - Create a new task 8. `get_task` - Get task by ID 9. `update_task` - Update an existing task 10. `delete_task` - Delete a task 11. `get_stats` - Get user and task statistics ## Quick Start ### Option 1: Automated Demo ```bash ./demo.sh ``` This interactive script will guide you through the entire setup and testing process. ### Option 2: Manual Setup #### 1. Run Setup Script ```bash ./setup.sh ``` #### 2. Start the FastAPI Application ```bash source venv/bin/activate python sample_app.py ``` The FastAPI app will be available at `http://localhost:8000` #### 3. Start the MCP Server (in another terminal) ```bash source venv/bin/activate python mcp_server.py ``` #### 4. Install Gemini CLI ```bash npm install -g @google/gemini-cli@latest ``` #### 5. Add MCP Server to Gemini CLI ```bash gemini mcp add fastapi-sample stdio python $(pwd)/mcp_server.py ``` #### 6. Test the Integration ```bash # List available tools gemini mcp list # Call a tool gemini call fastapi-sample get_app_info # Create a user gemini call fastapi-sample create_user --name "John Doe" --email "john@example.com" --age 30 # Get all users gemini call fastapi-sample get_users # Create a task gemini call fastapi-sample create_task --title "Learn MCP" --description "Study Model Context Protocol" --user_id 1 # Get statistics gemini call fastapi-sample get_stats ``` ## Manual Setup If you prefer to set up manually: ### 1. Install Python Dependencies ```bash pip3 install -r requirements.txt ``` ### 2. Start Services - FastAPI app: `python3 sample_app.py` - MCP server: `python3 mcp_server.py` ### 3. Install and Configure Gemini CLI ```bash npm install -g @google/gemini-cli@latest gemini mcp add fastapi-sample stdio python3 /path/to/mcp_server.py ``` ## API Endpoints The FastAPI application provides the following REST endpoints: - `GET /` - App information - `GET /health` - Health check - `GET /users` - List users - `POST /users` - Create user - `GET /users/{user_id}` - Get user by ID - `GET /tasks` - List tasks - `POST /tasks` - Create task - `GET /tasks/{task_id}` - Get task by ID - `PUT /tasks/{task_id}` - Update task - `DELETE /tasks/{task_id}` - Delete task - `GET /stats` - Get statistics ## MCP Tool Examples ### Create and Manage Users ```bash # Create a user gemini call fastapi-sample create_user --name "Alice Smith" --email "alice@example.com" --age 25 # Get user by ID gemini call fastapi-sample get_user --user_id 1 # List all users gemini call fastapi-sample get_users ``` ### Create and Manage Tasks ```bash # Create a task gemini call fastapi-sample create_task --title "Complete project" --description "Finish the MCP integration" --user_id 1 # Update a task gemini call fastapi-sample update_task --task_id 1 --title "Complete project" --description "Finish the MCP integration" --user_id 1 --completed true # Delete a task gemini call fastapi-sample delete_task --task_id 1 ``` ### Get Statistics ```bash gemini call fastapi-sample get_stats ``` ## Troubleshooting ### Common Issues 1. **Port already in use**: Make sure port 8000 is available for the FastAPI app 2. **MCP server connection failed**: Ensure the FastAPI app is running before starting the MCP server 3. **Gemini CLI not found**: Make sure Node.js and npm are installed, then install Gemini CLI globally ### Debug Mode To run the FastAPI app in debug mode: ```bash uvicorn sample_app:app --reload --host 0.0.0.0 --port 8000 ``` ### Check MCP Server Status ```bash gemini mcp list ``` ## Development ### Adding New Endpoints 1. Add the endpoint to `sample_app.py` 2. Add the corresponding tool to `mcp_server.py` in the `handle_list_tools()` function 3. Add the tool handler in the `handle_call_tool()` function ### Testing You can test the FastAPI endpoints directly using curl: ```bash # Test app info curl http://localhost:8000/ # Create a user curl -X POST http://localhost:8000/users \ -H "Content-Type: application/json" \ -d '{"name": "Test User", "email": "test@example.com", "age": 30}' # Get users curl http://localhost:8000/users ``` ## License This project is for educational purposes and demonstrates MCP integration patterns.

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/arrehman3/MCP'

If you have feedback or need assistance with the MCP directory API, please join our Discord server