"""
Land Cover Classification using Deep Learning.
"""
import asyncio
from pathlib import Path
from typing import Tuple, Optional, Literal
import numpy as np
import structlog
from geosight.config import settings
logger = structlog.get_logger(__name__)
LAND_COVER_CLASSES = {
0: {"name": "Forest", "color": "#228B22"},
1: {"name": "Shrubland", "color": "#90EE90"},
2: {"name": "Grassland", "color": "#ADFF2F"},
3: {"name": "Cropland", "color": "#FFD700"},
4: {"name": "Built-up", "color": "#DC143C"},
5: {"name": "Barren", "color": "#DEB887"},
6: {"name": "Water", "color": "#4169E1"},
7: {"name": "Wetland", "color": "#20B2AA"},
}
class LandCoverClassifier:
"""Deep learning model for land cover classification."""
def __init__(
self,
model_name: Literal["eurosat", "deepglobe", "custom"] = "eurosat",
device: Optional[str] = None,
):
self.model_name = model_name
self.device = device or settings.model.inference_device
self._model = None
self._initialized = False
async def classify(
self,
imagery: np.ndarray,
) -> Tuple[np.ndarray, np.ndarray]:
"""
Classify land cover in satellite imagery.
Returns:
Tuple of (classification_map, confidence_map)
"""
# For demo, generate synthetic classification
return self._generate_demo_classification(imagery.shape[:2])
def _generate_demo_classification(
self,
shape: Tuple[int, int],
) -> Tuple[np.ndarray, np.ndarray]:
"""Generate demo classification."""
height, width = shape
np.random.seed(42)
x = np.linspace(0, 4, width)
y = np.linspace(0, 4, height)
xx, yy = np.meshgrid(x, y)
noise = np.sin(xx) * np.cos(yy) + 0.5 * np.sin(2*xx + yy)
noise = (noise - noise.min()) / (noise.max() - noise.min())
class_map = (noise * 7).astype(np.int32)
confidence_map = 0.7 + 0.3 * np.random.random(shape).astype(np.float32)
return class_map, confidence_map