Skip to main content
Glama
appwrite

Appwrite MCP Server

Official
by appwrite

tables_db_create_string_column

Add a text column to an Appwrite database table to store character-based data with configurable size, requirements, and security options.

Instructions

Create a string column.

Input Schema

TableJSON Schema
NameRequiredDescriptionDefault
database_idYesDatabase ID.
table_idYesTable ID. You can create a new table using the Database service [server integration](https://appwrite.io/docs/references/cloud/server-dart/tablesDB#createTable).
keyYesColumn Key.
sizeYesColumn size for text columns, in number of characters.
requiredYesIs column required?
defaultNoDefault value for column when not provided. Cannot be set when column is required.
arrayNoIs column an array?
encryptNoToggle encryption for the column. Encryption enhances security by not storing any plain text values in the database. However, encrypted columns cannot be queried.

Implementation Reference

  • Universal handler for all tools. For 'tables_db_create_string_column', it retrieves the bound TablesDB.create_string_column method from the registry and invokes it with user arguments, handling results and errors.
    @server.call_tool() async def handle_call_tool( name: str, arguments: dict | None ) -> list[types.TextContent | types.ImageContent | types.EmbeddedResource]: try: tool_info = tools_manager.get_tool(name) if not tool_info: raise McpError(f"Tool {name} not found") bound_method = tool_info["function"] result = bound_method(**(arguments or {})) if hasattr(result, 'to_dict'): result_dict = result.to_dict() return [types.TextContent(type="text", text=str(result_dict))] return [types.TextContent(type="text", text=str(result))] except AppwriteException as e: return [types.TextContent(type="text", text=f"Appwrite Error: {str(e)}")] except Exception as e: return [types.TextContent(type="text", text=f"Error: {str(e)}")]
  • Dynamically generates tool definitions for all public methods on TablesDB(client), including schema from type hints and docstrings. Constructs tool name as 'tables_db_create_string_column' from service_name='tables_db' and method_name='create_string_column'.
    def list_tools(self) -> Dict[str, Dict]: """Lists all available tools for this service""" tools = {} for name, func in inspect.getmembers(self.service, predicate=inspect.ismethod): if name.startswith('_'): # Skip private methods continue original_func = func.__func__ # Skip if not from the service's module if original_func.__module__ != self.service.__class__.__module__: continue # Get the overridden name if it exists tool_name = self._method_name_overrides.get(name, f"{self.service_name}_{name}") docstring = parse(original_func.__doc__) signature = inspect.signature(original_func) type_hints = get_type_hints(original_func) properties = {} required = [] for param_name, param in signature.parameters.items(): if param_name == 'self': continue param_type = type_hints.get(param_name, str) properties[param_name] = self.python_type_to_json_schema(param_type) properties[param_name]["description"] = f"Parameter '{param_name}'" for doc_param in docstring.params: if doc_param.arg_name == param_name: properties[param_name]["description"] = doc_param.description if param.default is param.empty: required.append(param_name) tool_definition = Tool( name=tool_name, description=f"{docstring.short_description or "No description available"}", inputSchema={ "type": "object", "properties": properties, "required": required } ) tools[tool_name] = { "definition": tool_definition, "function": func } return tools
  • Registers the TablesDB service (with service_name='tables_db') which triggers introspection and registration of its methods as tools, including 'tables_db_create_string_column'.
    def register_services(args): # If --all is specified, enable all services if args.all: args.tables_db = args.users = args.teams = args.storage = True args.functions = args.messaging = args.locale = args.avatars = True args.sites = True # Register services based on CLI arguments if args.tables_db: tools_manager.register_service(Service(TablesDB(client), "tables_db")) if args.users: tools_manager.register_service(Service(Users(client), "users")) if args.teams: tools_manager.register_service(Service(Teams(client), "teams")) if args.storage: tools_manager.register_service(Service(Storage(client), "storage")) if args.functions: tools_manager.register_service(Service(Functions(client), "functions")) if args.messaging: tools_manager.register_service(Service(Messaging(client), "messaging")) if args.locale: tools_manager.register_service(Service(Locale(client), "locale")) if args.avatars: tools_manager.register_service(Service(Avatars(client), "avatars")) if args.sites: tools_manager.register_service(Service(Sites(client), "sites")) if args.databases: tools_manager.register_service(Service(Databases(client), "databases")) # If no services were specified, enable tables_db by default if not any([args.databases, args.tables_db, args.users, args.teams, args.storage, args.functions, args.messaging, args.locale, args.avatars, args.sites]): tools_manager.register_service(Service(TablesDB(client), "tables_db"))
  • ToolManager.register_service appends the service and updates the global tools_registry with the tools from TablesDB service, storing definition and function for 'tables_db_create_string_column'.
    def register_service(self, service: Service): """Register a new service and its tools""" self.services.append(service) self.tools_registry.update(service.list_tools())
  • Helper function used to convert Python type hints of TablesDB.create_string_column parameters to JSON Schema for the tool's inputSchema.
    def python_type_to_json_schema(self, py_type: Any) -> dict: """Converts Python type hints to JSON Schema types.""" type_mapping = { str: "string", int: "integer", float: "number", bool: "boolean", list: "array", dict: "object" } # Handle basic types if py_type in type_mapping: return {"type": type_mapping[py_type]} # Handle Optional types (Union[type, None]) if hasattr(py_type, "__origin__") and py_type.__origin__ is Union: args = getattr(py_type, "__args__", ()) if len(args) == 2 and args[1] is type(None): schema = self.python_type_to_json_schema(args[0]) return schema # Handle List, Dict, and other generic types if hasattr(py_type, "__origin__"): origin = py_type.__origin__ args = getattr(py_type, "__args__", ()) # Handle List[T] if origin is list or origin is List: if args: item_schema = self.python_type_to_json_schema(args[0]) return { "type": "array", "items": item_schema } return {"type": "array"} # Handle Dict[K, V] if origin is dict or origin is Dict: if len(args) >= 2: value_schema = self.python_type_to_json_schema(args[1]) return { "type": "object", "additionalProperties": value_schema } return {"type": "object"} # Default to string for unknown types return {"type": "string"}

Other Tools

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/appwrite/mcp-for-api'

If you have feedback or need assistance with the MCP directory API, please join our Discord server