Skip to main content
Glama

AWS Advisor MCP Server

README.md2.77 kB
# AWS Advisor MCP Server A Model Context Protocol (MCP) server that provides AWS service recommendations based on your use case descriptions. ## Features - **suggest_aws_service**: Get AWS service recommendations by describing your use case - **list_aws_categories**: Browse AWS services organized by category (compute, storage, database, etc.) ## Setup 1. **Install uv** (if not already installed): ```bash curl -LsSf https://astral.sh/uv/install.sh | sh ``` 2. **Sync dependencies**: ```bash uv sync ``` This will create a virtual environment and install all dependencies. ## Configuration for Cursor IDE Add this server to your Cursor MCP settings: 1. Open Cursor Settings 2. Navigate to the MCP section 3. Add a new server with this configuration: ```json { "mcpServers": { "aws-advisor": { "command": "uv", "args": [ "--directory", "/Users/antonioschaffert/workspace/tony/my-dev-mcp", "run", "python", "src/aws_advisor_server.py" ] } } } ``` Or add it to your MCP config file (usually `~/.cursor/mcp_config.json` or similar): ```json { "aws-advisor": { "command": "uv", "args": [ "--directory", "/Users/antonioschaffert/workspace/tony/my-dev-mcp", "run", "python", "src/aws_advisor_server.py" ] } } ``` ## Usage Once configured, you can use the tools in Cursor: ### Example prompts: - "What AWS service should I use for serverless computing?" - "Suggest AWS services for storing images" - "What's the best AWS service for a relational database?" - "Show me AWS services for real-time data streaming" - "List all AWS categories" ### Available Tools: 1. **suggest_aws_service** - Input: `use_case` (string) - Description of what you want to build - Returns: Recommended AWS services with explanations 2. **list_aws_categories** - No input required - Returns: All AWS service categories and their services ## Testing Locally You can test the server directly: ```bash uv run python src/aws_advisor_server.py ``` Then send MCP protocol messages via stdin (for advanced testing). ## Covered AWS Services - **Compute**: EC2, Lambda, ECS, EKS, Fargate, Lightsail - **Storage**: S3, EBS, EFS, Glacier, FSx - **Database**: RDS, DynamoDB, Aurora, DocumentDB, ElastiCache, Neptune, Redshift - **Networking**: VPC, CloudFront, Route53, API Gateway, Direct Connect, ELB - **Analytics**: Athena, EMR, Kinesis, Glue, QuickSight - **ML/AI**: SageMaker, Rekognition, Comprehend, Polly, Transcribe, Translate, Lex - **Security**: IAM, Cognito, KMS, Secrets Manager, WAF, GuardDuty - **Messaging**: SQS, SNS, EventBridge, SES - **Monitoring**: CloudWatch, X-Ray, CloudTrail ## Requirements - Python 3.10+ - mcp package (>=0.9.0)

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/antonioschaffert/my-dev-mcp'

If you have feedback or need assistance with the MCP directory API, please join our Discord server