Skip to main content
Glama

Notion MCP Server V2

by ankitmalik84
utils.pyโ€ข1.7 kB
import tiktoken from pydantic import create_model import inspect from inspect import Parameter from typing import Callable, Dict, Any class Utils: def count_number_of_tokens(self, text: str) -> int: """ Counts the number of tokens in a given text using the GPT-4o-mini encoding. Args: text (str): The text to tokenize. Returns: int: The number of tokens in the input text. """ encoding = tiktoken.encoding_for_model("gpt-4o-mini") tokens = encoding.encode(text) return len(tokens) def count_number_of_characters(self, text: str) -> int: """ Counts the number of characters in a given text. Args: text (str): The text to measure. Returns: int: The number of characters in the input text. """ return len(text) def jsonschema(self, f: Callable) -> Dict[str, Any]: """ Generate a JSON schema for the input parameters of the given function. Parameters: f (FunctionType): The function for which to generate the JSON schema. Returns: Dict[str, Any]: A dictionary containing: - `name` (str): The function name. - `description` (str): The function docstring. - `parameters` (dict): The schema of input parameters. """ kw = {n: (o.annotation, ... if o.default == Parameter.empty else o.default) for n, o in inspect.signature(f).parameters.items()} s = create_model(f'Input for `{f.__name__}`', **kw).schema() return dict(name=f.__name__, description=f.__doc__, parameters=s)

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/ankitmalik84/Agentic_Longterm_Memory'

If you have feedback or need assistance with the MCP directory API, please join our Discord server