Skip to main content
Glama

Notion MCP Server V2

by ankitmalik84
prepare_vectordb.pyโ€ข1.95 kB
import os import chromadb from chromadb.utils import embedding_functions from dotenv import load_dotenv from pyprojroot import here from utils.config import Config load_dotenv() def prepare_vector_db(): """ Prepares a vector database using ChromaDB and OpenAI embeddings. This function sets up a vector database by: - Loading configuration from the `Config` class. - Creating an OpenAI embedding function using the provided API key and model. - Creating the vector database directory if it doesn't exist. - Initializing a persistent ChromaDB client at the specified directory. - Creating or retrieving a collection in the vector database with cosine similarity. Steps: 1. Load OpenAI API key and model name from environment and configuration. 2. Create vector database directory if it doesn't already exist. 3. Initialize a ChromaDB client with a persistent storage path. 4. Create or get an existing collection with specified name and embedding function. 5. Log the creation and the number of items in the collection. """ CFG = Config() openai_embedding_function = embedding_functions.OpenAIEmbeddingFunction( api_key=os.getenv("OPENAI_API_KEY"), model_name=CFG.embedding_model ) if not os.path.exists(here(CFG.vectordb_dir)): # If it doesn't exist, create the directory and create the embeddings os.makedirs(here(CFG.vectordb_dir)) print(f"Directory '{CFG.vectordb_dir}' was created.") db_client = chromadb.PersistentClient(path=str(CFG.vectordb_dir)) db_collection = db_client.get_or_create_collection( name=CFG.collection_name, embedding_function=openai_embedding_function, metadata={"hnsw:space": "cosine"} ) print("DB collection created:", db_collection) print("DB collection count:", db_collection.count()) if __name__ == "__main__": prepare_vector_db()

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/ankitmalik84/Agentic_Longterm_Memory'

If you have feedback or need assistance with the MCP directory API, please join our Discord server