Skip to main content
Glama
angrysky56

Narrative Graph MCP

rtm_generate_ensemble

Generate statistical ensembles of Random Trees to model population-level recall from narrative text and titles for analysis.

Instructions

Generate a statistical ensemble of Random Trees to model population-level recall

Input Schema

TableJSON Schema
NameRequiredDescriptionDefault
textYesThe narrative text to analyze
titleYesTitle of the narrative
ensembleSizeNoNumber of trees to generate in the ensemble
maxBranchingFactorNoMaximum number of child nodes (K parameter)
maxRecallDepthNoMaximum depth for recall (D parameter)

Implementation Reference

  • The primary handler function implementing the rtm_generate_ensemble tool. It processes input parameters, generates an RTM ensemble using RTMEnsembleGenerator, computes statistics, and returns a JSON-formatted result.
    export default async function generateEnsemble(params: GenerateEnsembleParams) { try { // Create narrative from text const narrative = createNarrative(params.text, params.title); // Create RTM parameters const parameters = { ...createDefaultParameters(), maxBranchingFactor: params.maxBranchingFactor || 4, maxRecallDepth: params.maxRecallDepth || 6 }; // Generate ensemble const generator = new RTMEnsembleGenerator(parameters); const ensemble = await generator.generateEnsemble( narrative, params.ensembleSize || 100 ); // Analyze variance const variance = generator.analyzeEnsembleVariance(ensemble); // Test for scale invariance const scaleInvariance = generator.testScaleInvariance(ensemble); return { content: [{ type: "text", text: JSON.stringify({ success: true, ensembleId: `ensemble_${narrative.id}`, narrativeId: narrative.id, statistics: { ensembleSize: ensemble.trees.length, meanRecallLength: ensemble.statistics.meanRecallLength, stdRecallLength: ensemble.statistics.stdRecallLength, scalingExponent: ensemble.statistics.scalingExponent, variance: variance, scaleInvariance: scaleInvariance }, message: `Generated ensemble of ${ensemble.trees.length} trees with mean recall length ${ensemble.statistics.meanRecallLength.toFixed(2)} ± ${ensemble.statistics.stdRecallLength.toFixed(2)}` }, null, 2) }], }; } catch (error) { return { content: [{ type: "text", text: JSON.stringify({ success: false, error: error instanceof Error ? error.message : "Unknown error occurred" }, null, 2) }], }; } }
  • Zod input schema defining parameters for the rtm_generate_ensemble tool, used for validation in the server.
    export const generateEnsembleSchema = z.object({ text: z.string().describe('The narrative text to analyze'), title: z.string().describe('Title of the narrative'), ensembleSize: z.number().default(100).describe('Number of trees to generate in the ensemble'), maxBranchingFactor: z.number().default(4).describe('Maximum number of child nodes (K parameter)'), maxRecallDepth: z.number().default(6).describe('Maximum depth for recall (D parameter)'), });
  • src/index.ts:47-52 (registration)
    Registration of the generateEnsemble handler function in the tools registry object under the key 'rtm_generate_ensemble'.
    const tools = { rtm_create_narrative_tree: createNarrativeTree, rtm_generate_ensemble: generateEnsemble, rtm_traverse_narrative: traverseNarrative, rtm_find_optimal_depth: findOptimalDepth, };
  • src/index.ts:62-65 (registration)
    Tool definition in the toolDefinitions array, registering the name, description, and schema for listing and validation.
    name: 'rtm_generate_ensemble', description: 'Generate a statistical ensemble of Random Trees to model population-level recall', inputSchema: generateEnsembleSchema, },
  • Core helper class RTMEnsembleGenerator used by the handler to generate ensembles, compute statistics, variance analysis, and scale invariance tests.
    export class RTMEnsembleGenerator { private limit = pLimit(5); // Concurrent tree generation limit constructor(private parameters: RTMParameters) {} /** * Generate an ensemble of Random Trees for a narrative * @param narrative - Source narrative * @param ensembleSize - Number of trees to generate * @returns Complete ensemble with statistics */ async generateEnsemble( narrative: Narrative, ensembleSize: number ): Promise<RTMEnsemble> { // Create clause map for traversal const clauseMap = new Map( narrative.clauses.map(c => [c.id, c]) ); // Generate trees in parallel with concurrency limit const treePromises = Array.from({ length: ensembleSize }, () => this.limit(() => this.generateSingleTree(narrative)) ); const trees = await Promise.all(treePromises); // Calculate ensemble statistics const statistics = this.calculateEnsembleStatistics(trees, clauseMap); return { narrativeId: narrative.id, trees, parameters: this.parameters, statistics }; } /** * Generate a single Random Tree * @param narrative - Source narrative * @returns Random tree instance */ private async generateSingleTree(narrative: Narrative): Promise<RandomTree> { const builder = new RTMTreeBuilder(this.parameters); return builder.buildTree(narrative); } /** * Calculate statistical properties of the ensemble * @param trees - Array of trees * @param clauseMap - Map of clause IDs to clauses * @returns Ensemble statistics */ private calculateEnsembleStatistics( trees: RandomTree[], clauseMap: Map<string, Clause> ): EnsembleStatistics { const recallLengths: number[] = []; const compressionByScale: Record<TemporalScale, number[]> = { 'clause': [], 'sentence': [], 'paragraph': [], 'section': [], 'chapter': [], 'document': [] }; // Analyze each tree trees.forEach(tree => { const traversal = new RTMTraversal(tree, clauseMap); // Simulate recall at max depth const result = traversal.traverseToDepth(this.parameters.maxRecallDepth); recallLengths.push(result.totalClauses); // Collect compression ratios by scale tree.nodes.forEach(node => { compressionByScale[node.temporalScale].push(node.compressionRatio); }); }); // Calculate mean and std of recall lengths const meanRecallLength = recallLengths.reduce((a, b) => a + b, 0) / recallLengths.length; const variance = recallLengths.reduce( (sum, len) => sum + Math.pow(len - meanRecallLength, 2), 0 ) / recallLengths.length; const stdRecallLength = Math.sqrt(variance); // Calculate scaling exponent if enough data const allCompressionRatios = Object.values(compressionByScale) .flat() .filter(r => r > 0); const scalingExponent = allCompressionRatios.length > 10 ? calculateScalingExponent(allCompressionRatios) : undefined; return { meanRecallLength, stdRecallLength, compressionDistribution: compressionByScale, scalingExponent }; } /** * Analyze variance across ensemble * @param ensemble - Complete ensemble * @returns Variance analysis */ analyzeEnsembleVariance(ensemble: RTMEnsemble): { structuralVariance: number; depthVariance: number; branchingVariance: number; } { const structures = ensemble.trees.map(tree => { const stats = this.getTreeStructureStats(tree); return { nodeCount: stats.totalNodes, maxDepth: stats.maxDepth, avgBranching: stats.avgBranchingFactor }; }); // Calculate variances const avgNodeCount = structures.reduce((sum, s) => sum + s.nodeCount, 0) / structures.length; const structuralVariance = structures.reduce( (sum, s) => sum + Math.pow(s.nodeCount - avgNodeCount, 2), 0 ) / structures.length; const avgDepth = structures.reduce((sum, s) => sum + s.maxDepth, 0) / structures.length; const depthVariance = structures.reduce( (sum, s) => sum + Math.pow(s.maxDepth - avgDepth, 2), 0 ) / structures.length; const avgBranching = structures.reduce((sum, s) => sum + s.avgBranching, 0) / structures.length; const branchingVariance = structures.reduce( (sum, s) => sum + Math.pow(s.avgBranching - avgBranching, 2), 0 ) / structures.length; return { structuralVariance, depthVariance, branchingVariance }; } /** * Get structural statistics for a tree * @param tree - Random tree * @returns Tree statistics */ private getTreeStructureStats(tree: RandomTree) { const nodes = Array.from(tree.nodes.values()); const leafNodes = nodes.filter(n => n.children.length === 0); let maxDepth = 0; nodes.forEach(node => { maxDepth = Math.max(maxDepth, node.level); }); const nodesWithChildren = nodes.filter(n => n.children.length > 0); const avgBranchingFactor = nodesWithChildren.length > 0 ? nodesWithChildren.reduce((sum, n) => sum + n.children.length, 0) / nodesWithChildren.length : 0; return { totalNodes: nodes.length, maxDepth, avgBranchingFactor, leafNodes: leafNodes.length }; } /** * Test for scale invariance in the ensemble * @param ensemble - Complete ensemble * @param minNarrativeLength - Minimum length for scale invariance * @returns Scale invariance test results */ testScaleInvariance( ensemble: RTMEnsemble, minNarrativeLength: number = 1000 ): { isScaleInvariant: boolean; scalingExponent?: number; confidence: number; } { // Check if narrative is long enough const narrativeLength = ensemble.trees[0]?.nodes.get( ensemble.trees[0].rootNodeId )?.clauses.length || 0; if (narrativeLength < minNarrativeLength) { return { isScaleInvariant: false, confidence: 0 }; } // Check if we have a consistent scaling exponent const exponent = ensemble.statistics.scalingExponent; if (!exponent) { return { isScaleInvariant: false, confidence: 0 }; } // Calculate confidence based on variance in compression ratios const allRatios = Object.values(ensemble.statistics.compressionDistribution) .flat() .filter(r => r > 0); const meanRatio = allRatios.reduce((a, b) => a + b, 0) / allRatios.length; const variance = allRatios.reduce( (sum, r) => sum + Math.pow(r - meanRatio, 2), 0 ) / allRatios.length; // Lower variance = higher confidence const confidence = Math.exp(-variance / meanRatio); return { isScaleInvariant: Math.abs(exponent) > 0.1, scalingExponent: exponent, confidence }; } }

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/angrysky56/narrative-graph-mcp'

If you have feedback or need assistance with the MCP directory API, please join our Discord server