errorHandling.md•5.04 kB
# ErrorHandling
## Purpose and Overview
The error handling system in the MCP Logic server is designed to provide robust, informative, and recoverable error management. Key aspects include:
1. Error Categories:
   - Syntax errors in logical formulas
   - Proof execution errors
   - Resource management issues
   - Integration failures
   - System-level errors
2. Error Management Goals:
   - Clear error identification
   - Detailed error context
   - Recovery mechanisms
   - Debugging support
   - Performance impact tracking
3. Error Handling Strategy:
   - Hierarchical error classification
   - Contextual error information
   - Graceful degradation
   - Automatic recovery attempts
   - Comprehensive logging
[Why this domain is critical to the project]
## Step-by-Step Explanations
### Error Hierarchy Implementation
1. Base Error Classes:
```python
class LogicError(Exception):
    """Base class for all MCP Logic errors"""
    def __init__(
        self,
        message: str,
        details: Optional[dict] = None
    ):
        super().__init__(message)
        self.details = details or {}
        self.timestamp = datetime.now()
class ProverError(LogicError):
    """Errors from the Prover9/Mace4 system"""
    pass
class SyntaxError(LogicError):
    """Formula syntax errors"""
    pass
class ResourceError(LogicError):
    """Resource management errors"""
    pass
class IntegrationError(LogicError):
    """External system integration errors"""
    pass
```
2. Error Context Management:
```python
class ErrorContext:
    def __init__(self):
        self.error_stack = []
        self.context_data = {}
    
    def add_context(self, key: str, value: Any):
        self.context_data[key] = value
    
    def push_error(self, error: Exception):
        self.error_stack.append({
            'error': error,
            'context': self.context_data.copy(),
            'timestamp': datetime.now()
        })
    
    def get_error_history(self) -> List[dict]:
        return self.error_stack
```
3. Error Recovery Implementation:
```python
class ErrorRecovery:
    def __init__(self, max_retries: int = 3):
        self.max_retries = max_retries
        self.current_retries = 0
    
    async def with_recovery(
        self,
        operation: Callable,
        *args,
        **kwargs
    ) -> Any:
        while self.current_retries < self.max_retries:
            try:
                return await operation(*args, **kwargs)
            except Exception as e:
                self.current_retries += 1
                if self.current_retries >= self.max_retries:
                    raise
                await self.handle_error(e)
    
    async def handle_error(self, error: Exception):
        if isinstance(error, ResourceError):
            await self.cleanup_resources()
        elif isinstance(error, IntegrationError):
            await self.reconnect()
        await asyncio.sleep(self.current_retries)
```
### Error Logging Implementation
1. Structured Logging:
```python
class LogicLogger:
    def __init__(self):
        self.logger = logging.getLogger('mcp_logic')
        self.setup_logging()
    
    def setup_logging(self):
        formatter = logging.Formatter(
            '%(asctime)s - %(name)s - %(levelname)s - %(message)s'
        )
        handler = RotatingFileHandler(
            'mcp_logic.log',
            maxBytes=10000000,
            backupCount=5
        )
        handler.setFormatter(formatter)
        self.logger.addHandler(handler)
    
    def log_error(
        self,
        error: LogicError,
        level: int = logging.ERROR
    ):
        self.logger.log(level, str(error), extra={
            'error_type': type(error).__name__,
            'details': error.details,
            'timestamp': error.timestamp
        })
```
### Error Monitoring Implementation
1. Error Metrics Collection:
```python
class ErrorMetrics:
    def __init__(self):
        self.error_counts = defaultdict(int)
        self.error_durations = defaultdict(list)
    
    def record_error(
        self,
        error: LogicError,
        duration: float
    ):
        error_type = type(error).__name__
        self.error_counts[error_type] += 1
        self.error_durations[error_type].append(duration)
    
    def get_error_stats(self) -> dict:
        stats = {}
        for error_type in self.error_counts:
            stats[error_type] = {
                'count': self.error_counts[error_type],
                'avg_duration': (
                    sum(self.error_durations[error_type]) /
                    len(self.error_durations[error_type])
                ),
                'max_duration': max(self.error_durations[error_type])
            }
        return stats
```
[Concrete, detailed steps for implementation and maintenance]
## Annotated Examples
[Code snippets, diagrams, or flowcharts for clarity]
## Contextual Notes
[Historical decisions, trade-offs, and anticipated challenges]
## Actionable Advice
[Gotchas, edge cases, and common pitfalls to avoid]