Skip to main content
Glama
ampcome-mcps

Firecrawl MCP Server

by ampcome-mcps

firecrawl_extract

Extract structured data from web pages using AI, such as product details, prices, and names, based on custom prompts and JSON schemas.

Instructions

Extract structured information from web pages using LLM capabilities. Supports both cloud AI and self-hosted LLM extraction.

Best for: Extracting specific structured data like prices, names, details from web pages. Not recommended for: When you need the full content of a page (use scrape); when you're not looking for specific structured data. Arguments:

  • urls: Array of URLs to extract information from

  • prompt: Custom prompt for the LLM extraction

  • systemPrompt: System prompt to guide the LLM

  • schema: JSON schema for structured data extraction

  • allowExternalLinks: Allow extraction from external links

  • enableWebSearch: Enable web search for additional context

  • includeSubdomains: Include subdomains in extraction Prompt Example: "Extract the product name, price, and description from these product pages." Usage Example:

{ "name": "firecrawl_extract", "arguments": { "urls": ["https://example.com/page1", "https://example.com/page2"], "prompt": "Extract product information including name, price, and description", "systemPrompt": "You are a helpful assistant that extracts product information", "schema": { "type": "object", "properties": { "name": { "type": "string" }, "price": { "type": "number" }, "description": { "type": "string" } }, "required": ["name", "price"] }, "allowExternalLinks": false, "enableWebSearch": false, "includeSubdomains": false } }

Returns: Extracted structured data as defined by your schema.

Input Schema

TableJSON Schema
NameRequiredDescriptionDefault
allowExternalLinksNoAllow extraction from external links
enableWebSearchNoEnable web search for additional context
includeSubdomainsNoInclude subdomains in extraction
promptNoPrompt for the LLM extraction
schemaNoJSON schema for structured data extraction
systemPromptNoSystem prompt for LLM extraction
urlsYesList of URLs to extract information from

Implementation Reference

  • Tool schema definition for firecrawl_extract, including name, description, and detailed inputSchema with properties like urls, prompt, schema, etc.
    const EXTRACT_TOOL: Tool = { name: 'firecrawl_extract', description: ` Extract structured information from web pages using LLM capabilities. Supports both cloud AI and self-hosted LLM extraction. **Best for:** Extracting specific structured data like prices, names, details from web pages. **Not recommended for:** When you need the full content of a page (use scrape); when you're not looking for specific structured data. **Arguments:** - urls: Array of URLs to extract information from - prompt: Custom prompt for the LLM extraction - systemPrompt: System prompt to guide the LLM - schema: JSON schema for structured data extraction - allowExternalLinks: Allow extraction from external links - enableWebSearch: Enable web search for additional context - includeSubdomains: Include subdomains in extraction **Prompt Example:** "Extract the product name, price, and description from these product pages." **Usage Example:** \`\`\`json { "name": "firecrawl_extract", "arguments": { "urls": ["https://example.com/page1", "https://example.com/page2"], "prompt": "Extract product information including name, price, and description", "systemPrompt": "You are a helpful assistant that extracts product information", "schema": { "type": "object", "properties": { "name": { "type": "string" }, "price": { "type": "number" }, "description": { "type": "string" } }, "required": ["name", "price"] }, "allowExternalLinks": false, "enableWebSearch": false, "includeSubdomains": false } } \`\`\` **Returns:** Extracted structured data as defined by your schema. `, inputSchema: { type: 'object', properties: { urls: { type: 'array', items: { type: 'string' }, description: 'List of URLs to extract information from', }, prompt: { type: 'string', description: 'Prompt for the LLM extraction', }, systemPrompt: { type: 'string', description: 'System prompt for LLM extraction', }, schema: { type: 'object', description: 'JSON schema for structured data extraction', }, allowExternalLinks: { type: 'boolean', description: 'Allow extraction from external links', }, enableWebSearch: { type: 'boolean', description: 'Enable web search for additional context', }, includeSubdomains: { type: 'boolean', description: 'Include subdomains in extraction', }, }, required: ['urls'], }, };
  • Handler logic for firecrawl_extract tool. Validates arguments using isExtractOptions, calls client.extract from FirecrawlApp with parameters, handles response and errors, returns formatted content.
    case 'firecrawl_extract': { if (!isExtractOptions(args)) { throw new Error('Invalid arguments for firecrawl_extract'); } try { const extractStartTime = Date.now(); safeLog( 'info', `Starting extraction for URLs: ${args.urls.join(', ')}` ); // Log if using self-hosted instance if (FIRECRAWL_API_URL) { safeLog('info', 'Using self-hosted instance for extraction'); } const extractResponse = await withRetry( async () => client.extract(args.urls, { prompt: args.prompt, systemPrompt: args.systemPrompt, schema: args.schema, allowExternalLinks: args.allowExternalLinks, enableWebSearch: args.enableWebSearch, includeSubdomains: args.includeSubdomains, origin: 'mcp-server', } as ExtractParams), 'extract operation' ); // Type guard for successful response if (!('success' in extractResponse) || !extractResponse.success) { throw new Error(extractResponse.error || 'Extraction failed'); } const response = extractResponse as ExtractResponse; // Log performance metrics safeLog( 'info', `Extraction completed in ${Date.now() - extractStartTime}ms` ); // Add warning to response if present const result = { content: [ { type: 'text', text: trimResponseText(JSON.stringify(response.data, null, 2)), }, ], isError: false, }; if (response.warning) { safeLog('warning', response.warning); } return result; } catch (error) { const errorMessage = error instanceof Error ? error.message : String(error); // Special handling for self-hosted instance errors if ( FIRECRAWL_API_URL && errorMessage.toLowerCase().includes('not supported') ) { safeLog( 'error', 'Extraction is not supported by this self-hosted instance' ); return { content: [ { type: 'text', text: trimResponseText( 'Extraction is not supported by this self-hosted instance. Please ensure LLM support is configured.' ), }, ], isError: true, }; } return { content: [{ type: 'text', text: trimResponseText(errorMessage) }], isError: true, }; } }
  • src/index.ts:962-973 (registration)
    Registration of all tools including EXTRACT_TOOL (firecrawl_extract) in the ListToolsRequestSchema handler.
    server.setRequestHandler(ListToolsRequestSchema, async () => ({ tools: [ SCRAPE_TOOL, MAP_TOOL, CRAWL_TOOL, CHECK_CRAWL_STATUS_TOOL, SEARCH_TOOL, EXTRACT_TOOL, DEEP_RESEARCH_TOOL, GENERATE_LLMSTXT_TOOL, ], }));
  • Type guard helper function isExtractOptions used to validate arguments for firecrawl_extract handler.
    function isExtractOptions(args: unknown): args is ExtractArgs { if (typeof args !== 'object' || args === null) return false; const { urls } = args as { urls?: unknown }; return ( Array.isArray(urls) && urls.every((url): url is string => typeof url === 'string') ); }

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/ampcome-mcps/firecrawl-mcp'

If you have feedback or need assistance with the MCP directory API, please join our Discord server