Skip to main content
Glama

Ambivo MCP Server

Official
by ambivo-corp
README.md5.08 kB
# Ambivo Claude MCP Server This Claude MCP (Model Context Protocol) server provides access to Ambivo API endpoints for natural language querying of entity data with Claude AI. ## Features - **Natural Language Queries**: Execute natural language queries against entity data using the `/entity/natural_query` endpoint - **JWT Authentication**: Secure access using Bearer token authentication - **Rate Limiting**: Built-in rate limiting to prevent API abuse - **Token Caching**: Efficient token validation with caching - **Error Handling**: Comprehensive error handling with detailed error messages - **Retry Logic**: Automatic retry with exponential backoff for failed requests ## Tools ### 1. `set_auth_token` Set the JWT Bearer token for authentication with the Ambivo API. **Parameters:** - `token` (string, required): JWT Bearer token **Usage:** ```json { "token": "your-jwt-token-here" } ``` ### 2. `natural_query` Execute natural language queries against Ambivo entity data. **Parameters:** - `query` (string, required): Natural language query describing what data you want - `response_format` (string, optional): Response format - "table", "natural", or "both" (default: "both") **Example queries:** - "Show me leads created this week" - "Find contacts with gmail addresses" - "List opportunities worth more than $10,000" - "Show me leads with attribution_source google_ads from the last 7 days" **Usage:** ```json { "query": "Show me leads created this week with attribution_source google_ads", "response_format": "both" } ``` ## About This is a pure Claude-based MCP server implementation for the Ambivo API, designed to work seamlessly with Claude Desktop and other Claude-compatible MCP clients. It enables natural language interaction with your Ambivo CRM data through Claude's powerful language understanding capabilities. ## Installation ### Option 1: Install from PyPI (Recommended) ```bash pip install ambivo-mcp-server ``` ### Option 2: Install from Source ```bash git clone https://github.com/ambivo-corp/ambivo-mcp-server.git cd ambivo-mcp-server pip install -e . ``` ## Running the Server ```bash # If installed via pip ambivo-mcp-server # Or using Python module python -m ambivo_mcp_server.server ``` ## Configuration The server uses the following default configuration: - **Base URL**: `https://goferapi.ambivo.com` - **Timeout**: 30 seconds - **Content Type**: `application/json` You can modify these settings in the `AmbivoAPIClient` class if needed. ## Authentication 1. First, set your authentication token using the `set_auth_token` tool 2. The token will be included in all subsequent API requests as a Bearer token 3. The token should be a valid JWT token from your Ambivo API authentication ## Error Handling The server provides comprehensive error handling: - **Authentication errors**: Clear messages when token is missing or invalid - **HTTP errors**: Detailed HTTP status codes and response messages - **Validation errors**: Parameter validation with helpful error messages - **Network errors**: Timeout and connection error handling ## API Endpoints This MCP server interfaces with these Ambivo API endpoints: ### `/entity/natural_query` - **Method**: POST - **Purpose**: Process natural language queries for entity data retrieval - **Authentication**: Required (JWT Bearer token) - **Content-Type**: application/json ### `/entity/data` - **Method**: POST - **Purpose**: Direct entity data access with structured parameters - **Authentication**: Required (JWT Bearer token) - **Content-Type**: application/json ## Example Workflow 1. **Set Authentication**: ```json { "tool": "set_auth_token", "arguments": { "token": "eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9..." } } ``` 2. **Natural Language Query**: ```json { "tool": "natural_query", "arguments": { "query": "Show me all leads created in the last 30 days with phone numbers", "response_format": "both" } } ``` 3. **Direct Entity Query**: ```json { "tool": "entity_data", "arguments": { "entity_type": "contact", "filters": {"email": {"$regex": "@gmail.com$"}}, "limit": 100, "sort": {"created_date": -1} } } ``` ## Development To extend this MCP server: 1. **Add new tools**: Implement additional tools in the `handle_list_tools()` and `handle_call_tool()` functions 2. **Modify API client**: Extend the `AmbivoAPIClient` class to support additional endpoints 3. **Update configuration**: Modify default settings in the configuration section ## Troubleshooting **Common Issues:** 1. **"Authentication required" error**: Ensure you've called `set_auth_token` first 2. **HTTP 401/403 errors**: Verify your JWT token is valid and not expired 3. **Connection timeout**: Check network connectivity and API endpoint availability 4. **Invalid parameters**: Review the tool schemas for required and optional parameters **Logging:** The server logs important events and errors. Check the console output for debugging information.

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/ambivo-corp/ambivo-mcp-server'

If you have feedback or need assistance with the MCP directory API, please join our Discord server