Skip to main content
Glama

Vendor Risk Assessment MCP Server

by amarshikhar

Simple Vendor Risk Assessment MCP Server

šŸŽÆ Simplest possible vendor risk assessment using AWS Titan and MCP

Following krishnaik06 MCP-CRASH-Course pattern with function-only implementation.

šŸš€ Quick Start

Google Colab (Easiest)

  1. Open Vendor_Risk_Assessment_MCP.ipynb in Google Colab

  2. Add your AWS credentials

  3. Run all cells

Local Setup

# Extract and setup unzip simple_vendor_risk_mcp.zip cd vendor-risk-mcp python setup.py # Configure AWS cp .env.example .env # Edit .env with your AWS credentials # Test python test_client.py # Run MCP server python main.py

šŸ”§ MCP Tools

Tool

Description

assess_vendor_risk(vendor_name)

Single vendor risk assessment

compare_vendors(vendor_list)

Compare multiple vendors

get_industry_risk_benchmark(industry)

Industry risk insights

health_check()

System status check

āš™ļø Claude Desktop Config

Add to claude_desktop_config.json:

{ "mcpServers": { "vendor-risk": { "command": "python", "args": ["/path/to/main.py"], "env": { "AWS_ACCESS_KEY_ID": "your_key", "AWS_SECRET_ACCESS_KEY": "your_secret" } } } }

šŸ’” Example Usage

Single Assessment:

"Assess the risk of using Salesforce" → assess_vendor_risk("Salesforce")

Comparison:

"Compare Microsoft vs Google vs Amazon" → compare_vendors("Microsoft, Google, Amazon")

Industry Benchmark:

"What are typical risks in Healthcare?" → get_industry_risk_benchmark("Healthcare")

šŸ“Š How It Works

  1. Mock Data Generation: Creates realistic vendor profiles

  2. AWS Titan Analysis: AI-powered risk insights

  3. Risk Scoring: 1-10 scale (lower = better)

  4. Comprehensive Reports: Executive summaries with recommendations

šŸ› ļø Architecture

  • Function-only implementation (no classes)

  • FastMCP server for MCP protocol

  • AWS Bedrock Titan for AI analysis

  • Realistic mock data for demonstrations

  • Google Colab compatible

šŸ”’ Requirements

  • Python 3.9+

  • AWS account with Bedrock access

  • AWS credentials configured

šŸ“± Files Included

  • main.py - Main MCP server

  • test_client.py - Simple testing

  • setup.py - Easy installation

  • Vendor_Risk_Assessment_MCP.ipynb - Google Colab notebook

  • Configuration and documentation files

Built following krishnaik06 MCP-CRASH-Course patterns! šŸš€

-
security - not tested
F
license - not found
-
quality - not tested

remote-capable server

The server can be hosted and run remotely because it primarily relies on remote services or has no dependency on the local environment.

Enables AI-powered vendor risk assessment using AWS Titan, allowing users to evaluate individual vendors, compare multiple vendors, and get industry risk benchmarks through natural language queries.

  1. šŸš€ Quick Start
    1. Google Colab (Easiest)
    2. Local Setup
  2. šŸ”§ MCP Tools
    1. āš™ļø Claude Desktop Config
      1. šŸ’” Example Usage
        1. šŸ“Š How It Works
          1. šŸ› ļø Architecture
            1. šŸ”’ Requirements
              1. šŸ“± Files Included

                MCP directory API

                We provide all the information about MCP servers via our MCP API.

                curl -X GET 'https://glama.ai/api/mcp/v1/servers/amarshikhar/mcp-demo'

                If you have feedback or need assistance with the MCP directory API, please join our Discord server