Skip to main content
Glama

VisualAI MCP Server

Local AI image generation via Model Context Protocol (MCP) using MLX on Apple Silicon.

Build Status Tests License: MIT Node.js 18+ Python 3.9+

Features

  • Iterate on Designs: Conversational modifications to Figma mockups

  • Generate Assets: Professional icons, banners, mockups

  • Create Wireframes: Build wireframes through conversation

  • 100% Local: Zero API costs, full control

  • Apple Silicon Optimized: MLX framework with Metal GPU acceleration

Requirements

  • Hardware: Mac with Apple Silicon (M1, M2, M3, M4 or newer)

  • Software:

    • macOS 12+ (Monterey or later)

    • Node.js 18+

    • Python 3.9+ (included in macOS)

Quick Start

1. Installation

npm install npm run build

2. Setup Wizard (First Time - ~5 minutes)

When you first run the server, an interactive setup wizard will automatically start:

npm start

The wizard will automatically:

Step 1: Python Detection (< 1 min)

  • Verifies Python 3.9+ is installed

  • Suggests Homebrew install if not found: brew install python@3.11

  • Auto-detects common Python paths

Step 2: Dependency Installation (2-5 min)

  • Installs: mlx, huggingface-hub, pillow, torch

  • Creates isolated environment in ~/.visualai/venv

  • Shows progress for each package

Step 3: Model Download (15-40 min, depending on connection)

  • Downloads Stable Diffusion 2.1 (~5-7GB) from Hugging Face Hub

  • Saves to ~/.visualai/models/

  • Auto-resume if download is interrupted

  • Shows download progress with ETA

Step 4: Health Check (< 30 sec)

  • Generates test image (256x256) to validate setup

  • Auto-injects claude_desktop_config.json

  • Confirms MCP server is ready

Progress Feedback:

  • Visual spinner for each step

  • Time estimates for operations > 5 seconds

  • Bandwidth tracking for model download

After setup completes, you'll see:

✅ Setup complete! VisualAI is ready to use. Next steps: 1. Restart Claude Desktop to activate the VisualAI MCP server 2. Open Claude and check MCP servers list (should show "visualai") 3. Start using VisualAI tools!

3. Configuration

Copy .env.example to .env and customize if needed:

cp .env.example .env

Default settings work for most users.

Claude Desktop Configuration

The setup wizard automatically injects VisualAI MCP server configuration into claude_desktop_config.json:

Platform-specific paths:

  • macOS: ~/Library/Application Support/Claude/claude_desktop_config.json

  • Windows: %APPDATA%\Claude\claude_desktop_config.json

  • Linux: ~/.config/Claude/claude_desktop_config.json

Auto-injected configuration:

{ "mcpServers": { "visualai": { "command": "node", "args": ["/absolute/path/to/visualai-workspace/dist/index.js"], "env": { "PYTHON_PATH": "/path/to/python3", "MODEL_CACHE_DIR": "~/.cache/huggingface/" } } } }

The wizard preserves any existing MCP servers in your config.

Manual configuration (only if auto-injection fails):

  1. Open claude_desktop_config.json in your editor

  2. Add the VisualAI server configuration shown above

  3. Update paths to match your system

  4. Restart Claude Desktop

4. Start Server

npm start

The server uses stdin/stdout (JSON-RPC) as per MCP protocol.

MCP Tools

generate-image

Generate image from text prompt.

Input:

{ "prompt": "A serene lake at sunset", "width": 512, "height": 512, "steps": 20, "guidance_scale": 7.5, "seed": 42 }

Output:

  • Base64 encoded PNG image

  • Metadata (prompt, dimensions, latency, etc.)

  • Session ID for iteration tracking

check-engine-status

Check MLX engine and dependencies status.

Input: None

Output:

  • Engine ready status

  • Dependencies list with versions

  • Model path

list-sessions

List all available sessions.

Input: None

Output: Array of sessions with metadata

rollback-iteration

Revert to a previous iteration in a session.

Input:

{ "sessionId": "session-abc123", "iterationIndex": 2 }

preview-iteration

Preview a previous iteration without modifying session.

Input:

{ "sessionId": "session-abc123", "iterationIndex": 2 }

Architecture

  • Engine: MLX (Apple's ML framework for Apple Silicon)

  • Model: Stable Diffusion 2.1 (~5GB)

  • Protocol: MCP via stdin/stdout (JSON-RPC 2.0)

  • Sessions: File-based in ~/.visualai/sessions/

  • Performance: 8-15s per image (512x512) on M4

Setup Flow

npm start (first time) ↓ Auto-installer detects missing setup ├─ Check Python 3.9+ (with brew install fallback) ├─ Create virtualenv in ~/.visualai/venv ├─ Install dependencies (mlx, huggingface-hub, pillow, torch) └─ Validate with health check ↓ Model downloader ├─ Check ~/.visualai/models/ for existing model ├─ Download from Hugging Face Hub (resume-capable) └─ Progressive feedback with ETA ↓ claude_desktop_config.json injection ├─ Detect platform-specific path ├─ Create backup of existing config ├─ Merge VisualAI server with existing MCP servers └─ Validate JSON after write ↓ Server Ready (MCP listening on stdio)

CI/CD & Testing

Automated Testing

This project uses GitHub Actions for continuous integration and automated testing.

Workflows configured:

  • 🏗️ Build Validation (build.yml) - TypeScript compilation and type checking

  • 🧪 Test Suite (test.yml) - Unit, integration, acceptance, and E2E tests on Node 18, 20, 22

Test execution:

# All tests npm test # Acceptance tests only npm run test:acceptance # With coverage report npm test -- --coverage # View HTML coverage report open coverage/lcov-report/index.html

Test Statistics:

  • Total test files: 9 (4,210 lines)

  • Coverage layers: Unit → Integration → Acceptance → E2E

  • Test execution time: ~3 minutes

  • CI execution time: ~5 minutes (with coverage upload)

CI/CD Documentation: See .github/CI-CD-SETUP.md for complete CI/CD configuration details.

Workflow Status:

Development

# Watch mode (development) npm run dev # Build npm run build # Start npm start

Project Structure

src/ ├── engines/ # MLX engine implementation ├── mcp/ # MCP server and tools ├── session/ # Session management ├── setup/ # Auto-installer and dependency checker ├── types/ # TypeScript interfaces └── utils/ # Config and logger

Troubleshooting

Python not found

# Check Python version python3 --version # If not found, install via Homebrew: brew install python@3.11 # Re-run setup: npm start

MLX requires Apple Silicon

Error: "MLX requires Metal GPU on Apple Silicon"

  • Your Mac doesn't have Apple Silicon (Intel/T2 chip) = incompatible with current version

  • Minimum requirement: M1, M2, M3, or M4 chip

  • Workaround: Wait for Phase 2 (Core ML / cloud API support)

Model download hangs or times out

# 1. Check internet connection ping huggingface.co # 2. Stop server and restart (auto-resumes download) npm start # 3. If still fails, clear cache and retry rm -rf ~/.visualai/models/.huggingface/ npm start

Memory pressure / out of memory

Symptoms: Generation fails or takes > 60 seconds

  • 8GB RAM: Functional but slow (30-60s per image)

  • 16GB+ RAM: Optimal performance (8-15s per image)

  • Workaround: Close other applications to free memory

Claude Desktop configuration injection fails

# 1. Check if config was injected cat ~/Library/Application\ Support/Claude/claude_desktop_config.json | grep visualai # 2. If missing, manually add configuration # (see Configuration section above for JSON structure) # 3. Restart Claude Desktop

Build errors

# Clear build artifacts and reinstall rm -rf dist node_modules npm install npm run build

For more detailed troubleshooting, see TROUBLESHOOTING.md

License

MIT

-
security - not tested
A
license - permissive license
-
quality - not tested

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/alucardeht/frame-forge-mcp'

If you have feedback or need assistance with the MCP directory API, please join our Discord server