Skip to main content
Glama

Lingshu FastMCP Medical AI Service

This project implements a FastMCP server for the Lingshu medical AI model and a corresponding client for testing and integration.

Components

  1. mcp_server_lingshu.py: FastMCP server wrapping the Lingshu model

  2. mcp_client_lingshu.py: Test client demonstrating interaction with the Lingshu FastMCP server

Server Features

  • Medical image analysis

  • Structured medical report generation

  • Medical Q&A

Prerequisites

  • FastMCP framework

  • OpenAI API compatible LLM server (e.g., vLLM)

  • Required Python packages (install via pip install -r requirements.txt)

Setup

  1. Clone the repository

  2. Install dependencies: pip install -r requirements.txt

Usage

Use vLLM to serve the Lingshu Model

vllm serve lingshu-medical-mllm/Lingshu-7B --dtype float16 --api_key api_key --port 8000 --max-model-len 32768

Wrap the server with FastMCP

export LINGSHU_SERVER_URL="http://localhost:8000/v1" export LINGSHU_SERVER_API="api_key" export LINGSHU_MODEL="lingshu-medical-mllm/Lingshu-7B" # the above config depends on your vllm server config python mcp_server_lingshu.py --host 127.0.0.1 --port 4200 --path /lingshu --log-level info

Try connecting Lingshu with MCP

export LLM_SERVER_URL="xxx" export LLM_SERVER_API="xxx" export LLM_MODEL="xxx" ## this is your own model python mcp_client_lingshu.py --mcp-url http://127.0.0.1:4200/lingshu # the mcp-url should depend on the mcp server you deployed in the last step
-
security - not tested
F
license - not found
-
quality - not tested

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/alibaba-damo-academy/Lingshu_MCP'

If you have feedback or need assistance with the MCP directory API, please join our Discord server