Skip to main content
Glama
al-one

MCP Server for stock and crypto

okx_prices

Retrieve cryptocurrency candlestick data from OKX exchange for technical analysis and market monitoring. Access price history across multiple timeframes to inform trading decisions.

Instructions

获取OKX加密货币K线数据

Input Schema

TableJSON Schema
NameRequiredDescriptionDefault
barNoK线时间粒度,仅支持: [1m/3m/5m/15m/30m/1H/2H/4H/6H/12H/1D/2D/3D/1W/1M/3M] 注意大小写,仅分钟为小写m1h
instIdNo产品ID,格式: BTC-USDTBTC-USDT
limitNo返回数量(int),最大300,最小建议30

Implementation Reference

  • Handler function for 'okx_prices' tool. Fetches OKX candlestick data via API, processes with pandas, adds technical indicators using add_technical_indicators helper, and returns formatted recent data as CSV text. Input schema defined via Pydantic Field in parameters. Registered via @mcp.tool decorator.
    @mcp.tool( title="获取加密货币历史价格", description="获取OKX加密货币的历史K线数据,包括价格、交易量和技术指标", ) def okx_prices( instId: str = Field("BTC-USDT", description="产品ID,格式: BTC-USDT"), bar: str = Field("1H", description="K线时间粒度,仅支持: [1m/3m/5m/15m/30m/1H/2H/4H/6H/12H/1D/2D/3D/1W/1M/3M] 除分钟为小写m外,其余均为大写"), limit: int = Field(100, description="返回数量(int),最大300,最小建议30", strict=False), ): if not bar.endswith("m"): bar = bar.upper() res = requests.get( f"{OKX_BASE_URL}/api/v5/market/candles", params={ "instId": instId, "bar": bar, "limit": max(300, limit + 62), }, timeout=20, ) data = res.json() or {} dfs = pd.DataFrame(data.get("data", [])) if dfs.empty: return pd.DataFrame() dfs.columns = ["时间", "开盘", "最高", "最低", "收盘", "成交量", "成交额", "成交额USDT", "K线已完结"] dfs.sort_values("时间", inplace=True) dfs["时间"] = pd.to_datetime(dfs["时间"], errors="coerce", unit="ms") dfs["开盘"] = pd.to_numeric(dfs["开盘"], errors="coerce") dfs["最高"] = pd.to_numeric(dfs["最高"], errors="coerce") dfs["最低"] = pd.to_numeric(dfs["最低"], errors="coerce") dfs["收盘"] = pd.to_numeric(dfs["收盘"], errors="coerce") dfs["成交量"] = pd.to_numeric(dfs["成交量"], errors="coerce") dfs["成交额"] = pd.to_numeric(dfs["成交额"], errors="coerce") add_technical_indicators(dfs, dfs["收盘"], dfs["最低"], dfs["最高"]) columns = [ "时间", "开盘", "收盘", "最高", "最低", "成交量", "成交额", "MACD", "DIF", "DEA", "KDJ.K", "KDJ.D", "KDJ.J", "RSI", "BOLL.U", "BOLL.M", "BOLL.L", ] all = dfs.to_csv(columns=columns, index=False, float_format="%.2f").strip().split("\n") return "\n".join([all[0], *all[-limit:]])

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/al-one/mcp-aktools'

If you have feedback or need assistance with the MCP directory API, please join our Discord server